Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(35): 40408-40417, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36000946

RESUMEN

Recovery of noble metals and in situ transforming to functional materials hold great promise in the sustainability of natural resources but remain as a challenge. Herein, the variable chemical microenvironments created by the inorganic-organic hybrid composition of metal-organic frameworks (MOFs) were exploited to tune the metal-support interactions, thus establishing an integrated strategy for recovering and reducing palladium (Pd). Assisted by sonic waves and alcoholic solvent, selective capture of Pd(II) from a complicated matrix to directly afford Pd nanoparticles (NPs) in MOFs can be achieved in one step within several minutes. Mechanism investigation reveals that the Pd binding site and the energy barriers between ionic and metallic status are sensitive to chemical environments in different frameworks. Thanks to the clean, dispersive, and uniform nature of Pd NPs, Pd@MOFs synthesized from a complicated environment exhibited high catalytic activity toward 4-nitrophenol reduction and Suzuki coupling reactions.

2.
Angew Chem Int Ed Engl ; 61(6): e202110938, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34791775

RESUMEN

Microbial infections have become a great threat to human health and one of the main risks arises from direct contact with the surfaces contaminated by pathogenic microbes. Herein, a kind of hexagonal column interpenetrated spheres (HCISs) are fabricated by non-covalent assembly of plant gallic acid with quaternary ammonium surfactants. Different from one-time burst release of conventional antimicrobial agents, the HCIS acts like a "antimicrobial molecular bank" and releases the antimicrobial ingredients in a multistage way, leading to long-lasting antimicrobial performance. Taking advantage of strong hydrophobicity and adhesion, HCISs are applicable to various substrates and endowed with anti-water washing property, thus showing high in vitro antimicrobial efficiency (>99 %) even after being used for 10 cycles. Meanwhile, HCISs exhibit broad-spectrum antimicrobial activity against bacteria and fungi, and have good biocompatibility with mammalian cells. Such a low-cost and portable long-lasting antimicrobial agent meets the growing anti-infection demand in public spaces.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Materiales Biocompatibles/farmacología , Polifenoles/farmacología , Tensoactivos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Candida albicans/efectos de los fármacos , Cationes/química , Cationes/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tamaño de la Partícula , Polifenoles/química , Staphylococcus aureus/efectos de los fármacos , Tensoactivos/química
3.
Nat Commun ; 12(1): 5264, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489439

RESUMEN

All-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA'D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A'-core and PN-Se with benzotriazole A'-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10~20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%.

4.
Langmuir ; 34(43): 12924-12933, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30339015

RESUMEN

Chiral cationic gemini surfactants 1,4-bis(dodecyl- N, N-dimethylammonium bromide)-2,3-butanediol (12-4(OH)2-12) including racemate, mesomer, and two enantiomers were synthesized and their self-assembly in aqueous solution has been comparatively investigated by tensiometry, conductometry, 1H NMR, small-angle neutron scattering, cryogenic transmission electron microscopy, and cryogenic scanning electron microscopy. The chirality at spacer induces different self-assembly behaviors due to the hydrogen-bonding interaction between the hydroxyl groups at the chiral centers. The stereochemistry of the spacer has little effect on the release of the counterions from the surfactant headgroups and on the molecular packing at the air-water interface. The critical micelle concentration (CMC) decreases in the order of racemate > enantiomer > mesomer. Above the CMC, the aggregates of enantiomers transit from small spherical micelles to rodlike and wormlike micelles with increasing concentration, whereas the mesomer and racemate aggregates transform from spherical micelles to rodlike micelles and platelet-like aggregates. The differences may be because the mesomer and racemate molecules mainly form intermolecular hydrogen bonds between the -OH groups, but the enantiomer molecules dominantly form intramolecular hydrogen bonds. Furthermore, it was found that the chiral micelles formed by the enantiomers exhibit enantioselection ability for bilirubin (BR) enantiomers. The recognition capability can be adjusted by the micellar structure, i.e., the rodlike micelles are better than either small spherical micelles or wormlike micelles, which might possess different chiral cavities, controlling BR shape and location. These results demonstrate that the aggregates of chiral gemini surfactants can be used to mimic the chiral recognition in biological membrane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA