Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 708-716, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948268

RESUMEN

Objective: To explore the relationship between baseline clinical characteristics and hematological parameters of patients undergoing radical resection for pancreatic ductal adenocarcinoma (PDAC) and their prognosis, and to provide references for stratifying the patients' clinical risks. Methods: We retrospectively collected clinical data from 445 patients who underwent radical surgical treatment for PDAC at West China Hospital, Sichuan University between January 2010 and February 2019. Then, we conducted retrospective clinical analysis with the collected data. Data on patients' basic clinical characteristics, routine blood test results, and tumor indicators were collected to explore their effects on the postoperative overall survival (OS) of PDAC patients. Cox proportional hazards regression was used to identify factors affecting OS. Statistical analysis was performed using the SPSS 23.0 software package. Results: The postoperative median overall survival (mOS) was 17.0 months (95% CI: 15.0-19.0). The 1, 2, 3, 4, and 5-year survival rates of the patients included in the study were 60.6%, 33.4%, 19.1%, 12.7%, and 9.6%, respectively. The multivariate Cox proportional hazards model analysis demonstrated that a number of factors independently affect postoperative survival in PDAC patients. These factors include tumor location (hazards ratio [HR]=1.574, 95% CI: 1.233-2.011), degree of tumor cell differentiation (HR=0.687, 95% CI: 0.542-0.870), presence of neural invasion (HR=0.686, 95% CI: 0.538-0.876), TNM staging (HR=1.572, 95% CI: 1.252-1.974), postoperative adjuvant therapy (HR=1.799, 95% CI: 1.390-2.328), preoperative drinking history (HR=0.744, 95% CI: 0.588-0.943), and high serum CA199 levels prior to the surgery (HR=0.742, 95% CI: 0.563-0.977). Conclusion: In PDAC patients, having tumors located in the head of the pancreas, moderate and high degrees of differentiated, being free from local neurovascular invasion, being in TNM stage Ⅰ, undergoing postoperative adjuvant therapy, no history of alcohol consumption prior to the surgery, and preoperative serum CA199 being less than or equal to 37 U/mL are significantly associated with a better prognosis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/patología , Estudios Retrospectivos , Pronóstico , Masculino , Femenino , Carcinoma Ductal Pancreático/cirugía , Carcinoma Ductal Pancreático/sangre , Tasa de Supervivencia , Modelos de Riesgos Proporcionales , Persona de Mediana Edad , China/epidemiología , Anciano
2.
Cogn Emot ; : 1-16, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837896

RESUMEN

Previous studies have found that people with high negative emotional granularity(NEG) tend to have better health levels. It is generally believed that this is due to the selection and application of explicit emotion regulation strategies that affect mental health. However, no research has yet examined a more fundamental process, the role of affect labelling, an implicit emotion regulation strategy. This study focuses on the aforementioned issues and uses the experience sampling method to categorise participants into groups with high and low NEG. Using an affect labelling paradigm with ERP(event-related potential) technology, the study measures the effects of affect labelling in participants. Furthermore, it assesses the mental health levels of the participants through questionnaires to explore whether the affect labelling effect serves as a mediator between NEG and mental health. The results show that: (1) The high-NEG group exhibited significantly lower LPP wave amplitudes under affect labelling compared to under non-affect labelling, whereas the low-NEG group did not show significant differences. The results indicate that only the high-NEG group can produce the affect labelling effect. (2) The affect labelling effect mediates the relationship between NEG and mental health, meaning that NEG predicts mental health through the affect labelling effect.

3.
Int J Biol Macromol ; 271(Pt 1): 132224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821807

RESUMEN

Pickering emulsions seem to be an effective strategy for encapsulation and stabilization of essential oils. In this work, a novel raspberry-liked Pickering emulsion (RPE) loading Mosla chinensis 'Jiangxiangru' essential oil (MJO) was successfully engineered by using ethyl lauroyl arginate (ELA) decorated nanosilica (ELA-NS) as particles emulsifier. And the ELA-NS-stabilized MJO Pickering emulsion (MJO-RPE) was further prepared into inulin-based microparticles (MJO-RPE-IMP) by spray-drying, using inulin as matrix formers. The concentration of ELA-NS could affect the formation and stabilization of MJO-RPE, and the colloidal behavior of ELA-NS could be modulated at the interfaces with concentration of ELA, thus providing unique role on stabilization of MJO-RPE. The results indicated that the MJO-RPE stabilized ELA-NS with 2 % NS modified by 0.1 % ELA had long-term stability. MJO-RPE exhibited a raspberry-liked morphology on the surface, attributed to ELA-NS covered in the droplet surface. The inulin-based matrix formers could effectively prevent MJO-RPE from agglomeration or destruction during spray-drying, and 100 % concentration of inulin based microparticles formed large composite particles with high loading capacity (98.54 ± 1.11 %) and exhibited superior thermal stability and redispersibility of MJO-RPE. The MJO-RPE exhibited strong antibacterial efficacy against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa), owing to the adhesion to bacterial membrane dependent on the raspberry-liked surface of MJO-RPE, whose minimum inhibitory concentration (MIC) of the above three bacteria were (0.3, 0.45, and 1.2 µL/mL), respectively, lower than those (0.45, 0.6 and 1.2 µL/mL) of MJO. Therefore, the Pickering emulsion composite microparticles seemed to be a promising strategy for enhancing the stability and antibacterial activity of MJO.


Asunto(s)
Antibacterianos , Emulsiones , Inulina , Aceites Volátiles , Inulina/química , Inulina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Tamaño de la Partícula , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacos
4.
Int J Pharm X ; 7: 100246, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38628619

RESUMEN

The purpose of this study was to design novel drug nanocrystals (NCs) stabilized by glycyrrhizic acid (GL) for achieving liver targeted drug delivery due to the presence of GL receptor in the hepatocytes. Quercetin (QT) exhibits good pharmacological activities for the treatment of liver diseases, including liver steatosis, fatty hepatitis, liver fibrosis, and liver cancer. It was selected as a model drug owing to its poor water solubility. QT NCs stabilized by GL (QT-NCs/GL) were fabricated by wet media milling technique and systemically evaluated. QT-NCs stabilized by poloxamer 188 (QT-NCs/P188) were prepared as a reference for comparison of in vitro and in vivo performance with QT-NCs/GL. QT-NCs/GL and QT-NCs/P188 with similar particle size around 130 nm were successfully fabricated by wet media milling technique. Both of QT-NCs/GL and QT-NCs/P188 showed irregular particles and short rods under SEM. XRPD revealed that QT-NCs/GL and QT-NCs/P188 remained in crystalline state with reduced crystallinity. QT-NCs/GL and QT-NCs/P188 exhibited significant solubility increase and drug release improvement of QT as compared to raw QT. No significant difference for the plasma concentration-time curves and pharmacokinetic parameters of QT were found following intravenous administration of QT-NCs/GL and QT-NCs/P188. However, a significantly higher liver distribution of QT following intravenous administration of QT-NCs/GL was observed in comparison to QT-NCs/P188, indicating QT-NCs stabilized by GL could achieve liver targeted delivery of QT. It could be concluded that GL used as stabilizer of QT NCs have a great potential for liver targeted drug delivery.

5.
J Control Release ; 367: 107-134, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199524

RESUMEN

Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.


Asunto(s)
Nanopartículas , Nanoestructuras , Aceites Volátiles , Preparaciones de Acción Retardada , Nanopartículas/química , Nanoestructuras/química , Dióxido de Silicio/química , Porosidad
6.
J Pharm Sci ; 113(3): 699-710, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37659720

RESUMEN

The oral bioavailability of poorly soluble drugs has always been the focus of pharmaceutical researchers. We innovatively combined nanocrystal technology and solid dispersion technology to prepare novel nanocrystalline solid dispersions (NCSDs), which enable both the solidification and redispersion of nanocrystals, offering a promising new pathway for oral delivery of insoluble Chinese medicine ingredients. The rubusoside (Rub) was first used as the multifunctional stabilizer of novel apigenin nanocrystal-based solid dispersions (AP-NSD), improving the in vitro solubilization rate of the insoluble drug apigenin(AP). AP-NSD has been produced using a combination of homogenisation and spray-drying technology. The effects of stabilizer type and concentration on AP nanosuspensions (AP-NS) particles, span, and zeta potential were studied. And the effects of different types of protective agents on the yield and redispersibility of AP-NSD were also studied. Furthermore, AP-NSD was characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Solubility was used to assess the in vitro dissolution of AP-NSD relative to APIs and amorphous solid dispersions (AP-ASD), and AP-ASD was prepared by the solvent method. The results showed that 20% Rub stabilized AP-NSD exhibited high drug-loading and good redispersibility and stability, and higher in vitro dissolution rate, which may be related to the presence of Rub on surface of drug. Therefore provides a natural and safe option for the development of formulations for insoluble drugs.


Asunto(s)
Apigenina , Diterpenos de Tipo Kaurano , Glucósidos , Nanopartículas , Preparaciones Farmacéuticas , Composición de Medicamentos/métodos , Excipientes , Difracción de Rayos X , Nanopartículas/química , Solubilidad , Rastreo Diferencial de Calorimetría , Espectroscopía Infrarroja por Transformada de Fourier
7.
J Nanobiotechnology ; 21(1): 325, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684605

RESUMEN

Bacterial infection has been a major threat to worldwide human health, in particular with the ever-increasing level of antimicrobial resistance. Given the complex microenvironment of bacterial infections, conventional use of antibiotics typically renders a low efficacy in infection control, thus calling for novel strategies for effective antibacterial therapies. As an excellent candidate for antibiotics delivery, mesoporous silica nanoparticles (MSNs) demonstrate unique physicochemical advantages in antibacterial therapies. Beyond the delivery capability, extensive efforts have been devoted in engineering MSNs to be bioactive to further synergize the therapeutic effect in infection control. In this review, we critically reviewed the essential properties of MSNs that benefit their antibacterial application, followed by a themed summary of strategies in manipulating MSNs into bioactive nanoplatforms for enhanced antibacterial therapies. The chemically functionalized platform, photo-synergized platform, physical antibacterial platform and targeting-directed platform are introduced in details, where the clinical translation challenges of these MSNs-based antibacterial nanoplatforms are briefly discussed afterwards. This review provides critical information of the emerging trend in turning bioinert MSNs into bioactive antibacterial agents, paving the way to inspire and translate novel MSNs-based nanotherapies in combating bacterial infection diseases.


Asunto(s)
Antibacterianos , Nanopartículas , Humanos , Antibacterianos/farmacología , Dióxido de Silicio
8.
Psychol Res Behav Manag ; 16: 3597-3606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693333

RESUMEN

Purpose: To explore the psychological mechanism between alexithymia and Internet addiction, the present study constructed a moderated mediation model based on the problem behavior theory. Methods: A total of 899 middle school students (Mage=13.95, SD=1.10) were surveyed using the 20-item Toronto-alexithymia-scale, meaning in life questionnaire, dual filial piety scale, and Internet addiction disorder diagnostic scale. Results: First, alexithymia was significantly negatively correlated with meaning in life and reciprocal filial piety, and positively correlated with Internet addiction; meaning in life was significantly positively correlated with reciprocal filial piety, and negatively correlated with Internet addiction; reciprocal filial piety was significantly positively correlated with authoritarian filial piety, and negatively correlated with Internet addiction. Second, alexithymia could not only directly predict Internet addiction, but also indirectly predict Internet addiction through meaning in life. Third, reciprocal filial piety played a moderating role between meaning in life and Internet addiction, while authoritarian filial piety did not. For middle school students with low reciprocal filial piety, meaning in life can negatively predict Internet addiction; for those with high reciprocal filial piety, there is no correlation between meaning in life and Internet addiction. Conclusion: This study reveals the internal mechanism of the relationship between alexithymia and Internet addiction in middle school students, emphasizes the role of positive psychology and family environment, and provides specific evidence and theoretical guidance for preventing Internet addiction in middle school students.

9.
Front Pharmacol ; 14: 1196137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284321

RESUMEN

Asarum essential oil (AEO) has been shown to have good pharmacological activities for the anti-inflammatory and analgesic effects, but increasing the dose may cause toxicity. Therefore, we studied the toxic and pharmacodynamic components of AEO by molecular distillation (MD). Anti-inflammatory activity was assessed using RAW264.7 cells. Neurotoxicity was assessed in PC12 cells and the overall toxicity of AEO was evaluated in the mouse acute toxicity assay. The results showed that AEO is primarily composed of safrole, methyl eugenol, and 3,5-dimethoxytoluene. After MD, three fractions were obtained and contained different proportions of volatile compounds relative to the original oil. The heavy fraction had high concentrations of safrole and methyl eugenol, while the light fraction contained high concentrations of α-pinene and ß- pinene. The original oil and all three fractions exhibited anti-inflammatory effects, but the light fraction demonstrated more excellent anti-inflammatory activity than the other fractions. Asarum virgin oil and MD products are all neurotoxic. The exposure of PC12 cells to high concentrations of AEO resulted in abnormal nuclei, an increased number of apoptotic cells, increased ROS formation, and decreased SOD levels. Moreover, the results of acute toxicity tests in mice revealed that the light fractions were less toxic than virgin oils and other fractions. In summary, the data suggest that the MD technology enables the enrichment and separation of essential oil components and contributes to the selection of safe concentrations of AEO.

10.
J Cardiovasc Magn Reson ; 25(1): 37, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349765

RESUMEN

BACKGROUND: There is a paucity of quantitative measurements of cardiac tumors and myocardium using parametric mapping techniques. This study aims to explore quantitative characteristics and diagnostic performance of native T1, T2, and extracellular volume (ECV) values of cardiac tumors and left ventricular (LV) myocardium. METHODS: Patients with suspected cardiac tumors who underwent cardiovascular magnetic resonance (CMR) between November 2013 and March 2021 were prospectively enrolled. The diagnoses of primary benign or malignant tumors were based on pathologic findings if available, comprehensive medical history evaluations, imaging, and long-term follow-up data. Patients with pseudo-tumors, cardiac metastasis, primary cardiac diseases, and prior radiotherapy or chemotherapy were excluded. Multiparametric mapping values were measured on both cardiac tumors and the LV myocardium. Statistical analyses were performed using independent-samples t-test, receiver operating characteristic, and Bland-Altman analyses. RESULTS: A total of 80 patients diagnosed with benign (n = 54), or primary malignant cardiac tumors (n = 26), and 50 age and sex-matched healthy volunteers were included. Intergroup differences in the T1 and T2 values of cardiac tumors were not significant, however, patients with primary malignant cardiac tumors showed significantly higher mean myocardial T1 values (1360 ± 61.4 ms) compared with patients with benign tumors (1259.7 ± 46.2 ms), and normal controls (1206 ± 44.0 ms, all P < 0.05) at 3 T. Patients with primary malignant cardiac tumors also showed significantly higher mean ECV (34.6 ± 5.2%) compared with patients with benign (30.0 ± 2.5%) tumors, and normal controls (27.3 ± 3.0%, all P < 0.05). For the differentiation between primary malignant and benign cardiac tumors, the mean myocardial native T1 value showed the highest efficacy (AUC: 0.919, cutoff value: 1300 ms) compared with mean ECV (AUC: 0.817) and T2 (AUC: 0.619) values. CONCLUSION: Native T1 and T2 of cardiac tumors showed high heterogeneity, while myocardial native T1 values in primary malignant cardiac tumors were elevated compared to patients with benign cardiac tumors, which may serve as a new imaging marker for primary malignant cardiac tumors.


Asunto(s)
Neoplasias Cardíacas , Imagen por Resonancia Cinemagnética , Humanos , Estudios de Casos y Controles , Valor Predictivo de las Pruebas , Miocardio/patología , Imagen por Resonancia Magnética , Neoplasias Cardíacas/diagnóstico por imagen , Medios de Contraste
11.
Int J Biol Macromol ; 242(Pt 1): 124665, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121421

RESUMEN

Owing to volatility and poor water solubility, the medical application of Chimonanthus nitens Oliv. essential oil (CEO) in the fields of medicine was strictly limited. To tackle this problem, a novel CEO loaded rambutan-liked Pickering emulsion (CEO-RPE) with a spiky surface was effectively designed by coating with carboxymethyl cellulose sodium modified cellulose nanocrystals (CCN) as stabilizer. The effect of CCN concentration on the formation and stabilization of CEO-RPE was investigated. The results showed that CEO-RPE stabilized by 1 % CCN had a smaller droplet size and exhibited a rambutan-liked surface, and was stabilized against concentrated salt and high pH condition due to the steric barrier of CCN that covered in the droplet surface. Subsequently, the antibacterial performance of CEO-RPE was investigated against E. coli, S. aureus, P. aeruginosa, and S. pneumoniae by determining the minimum inhibitory concentration (MIC). The results showed that the CEO-RPE exhibited higher antibacterial activity compared to CEO, which could be attributed to its effective adhesion to the cell membrane of bacteria. In addition, the results of anti-inflammatory experiments showed that CEO-RPE also exhibited strong anti-inflammatory effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. Therefore, the CCN stabilized rambutan-liked Pickering emulsion seemed to be a promising strategy to increase the antibacterial and anti-inflammatory activity of CEO.


Asunto(s)
Nanopartículas , Aceites Volátiles , Ratas , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Emulsiones/química , Escherichia coli , Celulosa/química , Staphylococcus aureus , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
12.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677650

RESUMEN

To improve the sustained release and long-term antibacterial activity of Chimonanthus nitens Oliv. essential oil (CEO), novel sponge-liked nanoporous silica particles (SNP) were synthesized via the soft template method, which was employed as a biocompatible carrier to prepare spong-liked nanoporous silica particles loading with CEO (CEO-SNP) through physical adsorption. The structure and properties of the samples were characterized via N2 adsorption/desorption measurements, thermogravimetry (TGA), Fourier transform infrared, SEM and TEM. The result showed that the SNP exhibited an excellent loading capability of CEO up to 76.3%. The thermal stability and release behavior of the CEO were significantly improved via the physical adsorption of the SNP materials. The release profile of CEO was in accordance with the first-order kinetic model, which meant that the release mechanism was drug Fick's diffusion. The antibacterial evaluation results demonstrated that the CEO-SNP exhibited strong antibacterial activity against S. aureus, E. coli and P. aeruginosa. The antibacterial results have shown that the CEO-SNP could destroy the cell structure of bacteria, and result in the generation of oxidative stress and the release of nucleic acid. After storage of 30 d at 25 °C, the CEO-SNP still had the stronger antibacterial activity towards S. aureus, E. coli and P. aeruginosa in comparison with CEO. Therefore, the sponge-like silica nanoporous particles seemed to be a promising carrier for long-term stability and antibacterial delivery of CEO.


Asunto(s)
Nanoporos , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Dióxido de Silicio/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química
13.
Biomater Sci ; 11(3): 1013-1030, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36545798

RESUMEN

Multiple gastrointestinal barriers (mucus clearance and epithelium barrier) are the main challenges in the oral administration of nanocarriers. To achieve efficient mucus penetration and epithelial absorption, a novel strategy based on mesoporous silica nanoparticles with dendritic superstructure, hydrophilicity, and nearly neutral-charged modification was designed. The mPEG covalently grafted dendritic mesoporous silica nanoparticles (mPEG-DMSNs) had a particle size of about 200 nm and a loading capacity of up to 50% andrographolide (AG) as a nanocrystal cluster in the mesoporous structure. This dual strategy of combining with the surface topography structure and hydrophilic modification maintained a high mucus permeability and showed an increase in cell absorption. The mPEG-DMSN formulation also exhibited effective transepithelial transport and intestinal tract distribution. The pharmacokinetics study demonstrated that compared with other AG formulations, the andrographolide nanocrystals-loaded mPEG-DMSN (AG@mPEG-DMSN) exhibited much higher bioavailability. Also, AG@mPEG-DMSN could significantly improve the in vitro and in vivo anti-inflammatory efficacy of AG. In summary, mPEG-DMSN offers an interesting strategy to overcome the mucus clearance and epithelium barriers of the gastrointestinal tract.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Dióxido de Silicio/química , Nanopartículas/química , Absorción Intestinal , Administración Oral , Moco
14.
J Ethnopharmacol ; 298: 115646, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36031103

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The existence of the blood-brain barrier/blood tumor barrier (BBB/BTB) severely restricts the effectiveness of anti-tumor drugs, thus glioma is still an incurable disease with a high fatality rate. Chuanxiong (Ligusticum chuanxiong Hort., Umbelliferae) was used as a messenger drug to increase the distribution of drugs in brain tissue, and its application in Chinese herbal formula for treating glioma was also the highest. AIM OF THE STUDY: Our previous researches showed that essential oil (EO) of chuanxiong could promote temozolomide (TMZ) entry into glioma cells in vitro and enhance TMZ-induced anticancer efficiency in vivo, and therefore, the aim of this study was to investigate whether EO could increase the concentration accumulation of TMZ in brain or tumor of C6 glioma rats and the related mechanisms. MATERIALS AND METHODS: The pharmacokinetics were conducted in C6 glioma rats by administering either TMZ alone or combined with EO through oral routes. TMZ concentration in blood, brain and tumor was detected using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and then pharmacokinetic parameters were calculated. The changed expressions of P-gp protein, tight junction occludin, claudin-5 and zonula occludens-1 (ZO-1) in brain of glioma rats were studied by Western blot to clarify the mechanism. Finally, the chemical composition of EO was analyzed by gas chromatography-massspectrometry (GC-MS). RESULTS: The results showed that EO significantly affected the pharmacokinetic parameters such as Tmax, Cmax and CL (p < 0.01), but did not significantly change the AUC(0→∞) of TMZ in blood (p > 0.05). However, EO markedly improved the AUC(0→∞)of TMZ in brain and tumor (p < 0.01). The calculate drug targeting index was greater than 1, indicating that EO could promote the distribution of TMZ to the brain and tumor. Western blot analysis showed that EO significantly inhibited the expression of P-gp, tight junction protein claudin-5, occludin and ZO-1. And meanwhile, the expressions of P-gp, claudin-5 and occludin also markedly down-regulated in EO-TMZ co-administration treatment. GC-MS analysis of the TIC component of EO was (E)-Ligustilide (36.93%), Terpinolene (7.245%), gamma-terpinene (7.225%) etc. CONCLUSION: EO could promote the distribution of TMZ in the brain and tumor of C6 glioma rats, which may attribute to down-regulate the expression of P-gp, claudin-5 and occludin.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ligusticum , Aceites Volátiles , Animales , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/patología , Cromatografía Liquida , Claudina-5/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Glioma/metabolismo , Ocludina/metabolismo , Aceites Volátiles/química , Ratas , Espectrometría de Masas en Tándem , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proteínas de Uniones Estrechas/metabolismo
15.
Food Chem X ; 14: 100308, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35469312

RESUMEN

A "signal off" fluorescent aptasensor based on graphene oxide (GO) nanosheet and double-stranded DNA structure was fabricated for OTA detection. In the absence of OTA, the aptamer and its complementary DNA (cDNA) formed double-stranded conjugates that could coexist with GO, presenting fluorescence responses. Then, the presented OTA was captured by the aptamers, causing the release of cDNA-FAM probes. The free probes were adsorbed by GO, leading to an OTA concentration-dependent fluorescence quenching through fluorescence resonance energy transfer. Under optimum conditions, the fluorescent aptasensor exhibited outstanding sensitivity with a LOD of 11 pg/mL and a wide dynamic range of 0.04-30 ng/mL. The selectivity of the aptasensor was confirmed against other four mycotoxins, and the feasibility and reliability were verified by determining OTA in the spiked malt samples with satisfactory recovery of 95.50%-112.05%. This aptasensing platform could be adapted to measure other mycotoxins by replacing the aptamer sequences for food safety.

17.
Pharmaceutics ; 14(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35335914

RESUMEN

To effectively achieve the pulmonary delivery for curcumin (CN), novel inhalable mucus-penetrating nanocrystal-based microparticles (INMP) were designed. The D-Tocopherol acid polyethylene glycol 1000 succinate (TPGS) modified CN nanocrystals (CN-NS@TPGS) were prepared by high pressure homogenization and further converted into nanocrystal-based microparticles (CN-INMP@TPGS) using spray-drying. It was demonstrated that CN-NS@TPGS exhibited little interaction with the negatively charged mucin due to a strong electrostatic repulsion effect and PEG hydrophilic chain, and exhibited a much higher penetration ability across the mucus layer compared with poloxamer 407 modified CN-NS (CN-NS@P407) and tween 80 modified CN-NS (CN-NS@TW80). The aerodynamic results demonstrated that the CN-INMP with 10% TPGS acting as the stabilizer presented a high FPF value, indicating excellent deposition in the lung after inhalation administration. Additionally, in vivo bioavailability studies indicated that the AUC(0-t) of CN-INMP@TPGS (2413.18 ± 432.41 µg/L h) were 1.497- and 3.32-fold larger compared with those of CN-INMP@TW80 (1612.35 ± 261.35 µg/L h) and CN-INMP@P407 (3.103 ± 196.81 µg/L h), respectively. These results indicated that the CN-INMP@TPGS were absorbed rapidly after pulmonary administration and resulted in increased systemic absorption. Therefore, the inhalable CN-INMP could significantly improve the bioavailability of CN after inhalation administration. The developed mucus-penetrating nanocrystals-in-microparticles might be regarded as a promising formulation strategy for the pulmonary administration of poorly soluble drugs.

18.
Pharmacol Res ; 179: 106189, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331865

RESUMEN

Recently, comparative studies have rapidly increased with the closer correlation between microbiota and neurological diseases. However, most insights about the association between microbiota and neurological diseases still focus on the gut-brain axis and ignore that nasal microbiota could form a complex and essential link with the nervous system via the nose-to-brain pathway, suggesting the role in modulating the immune system, metabolic system, and nervous system development, which influence the physiopathology of neurological diseases. Due to the complex interactions between nasal microbiota and the brain, the nasal microbiota may have a particular pathogenic effect and therapeutic potential on neurological diseases. Therefore, this review aims to deeply analyze the dual effects of nasal microbiota on neurological diseases, focusing on pathogenic and therapeutic effects to provide a new perspective for preventing and treating neurological diseases by altering nasal microbiota. This review concludes the bidirectional effects of nasal microbiota on neurological diseases, including the pathogenicity and potential treatment on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Stroke. Furthermore, modern medical technology combined with artificial intelligence, including implantable sensors, modeling software, and nanofluid techniques, may further study the complex effects between nasal microbiota and the brain, thereby providing new options for treating neurological diseases.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedades del Sistema Nervioso , Inteligencia Artificial , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Factores de Riesgo
19.
Drug Deliv ; 29(1): 637-651, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35188021

RESUMEN

Pulmonary inhalation administration is an ideal approach to locally treat lung disease and to achieve systemic administration for other diseases. However, the complex nature of the structural characteristics of the lungs often results in the difficulty in the development of lung inhalation preparations. Nanocrystals technology provides a potential formulation strategy for the pulmonary delivery of poorly soluble drugs, owing to the decreased particle size of drug, which is a potential approach to overcome the physiological barrier existing in the lungs and significantly increased bioavailability of drugs. The pulmonary inhalation administration has attracted considerable attentions in recent years. This review discusses the barriers for pulmonary drug delivery and the recent advance of the nanocrystals in pulmonary inhalation delivery. The presence of nanocrystals opens up new prospects for the development of novel pulmonary delivery system. The particle size control, physical instability, potential cytotoxicity, and clearance mechanism of inhaled nanocrystals based formulations are the major considerations in formulation development.


Asunto(s)
Portadores de Fármacos/farmacocinética , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Administración por Inhalación , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica/métodos , Portadores de Fármacos/química , Liberación de Fármacos , Estabilidad de Medicamentos , Liofilización/métodos , Macrófagos Alveolares/metabolismo , Nanopartículas/química , Tamaño de la Partícula , Surfactantes Pulmonares/farmacología , Solubilidad , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA