Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Chemosphere ; 357: 141970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608776

RESUMEN

The extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from water bodies is imperative due to the potential harm to humans and the ecosystem caused by NSAID-contaminated water. Quaternary amino-functionalized epichlorohydrin cross-linked chitosan fibers (QECFs), an economical and eco-friendly adsorbent, were successfully prepared using a simple and gentle method for efficient diclofenac (DCF) adsorption. Additionally, the optimized factors for the preparation of QECFs included epichlorohydrin concentration, pH, temperature, and (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHTAC) concentration. QECFs demonstrated excellent adsorption performance for DCF across a broad pH range of 7-12. The calculated maximum adsorption capacity and the amount of adsorbed DCF per adsorption site were determined to be 987.5 ± 20.1 mg/g and 1.2 ± 0.2, respectively, according to the D-R and Hill isotherm models, at pH 7 within 180 min. This performance surpassed that of previously reported adsorbents. The regeneration of QECFs could be achieved using a 0.5 mol/L NaOH solution within 90 min, with QECFs retaining their original fiber form and experiencing only a 9.18% reduction in adsorption capacity after 5 cycles. The Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy were used to study the characterization of QECFs, the preparation mechanism of QECFs, and the adsorption mechanism of DCF by QECFs. Quaternary ammonium groups (R4N+) were well developed in QECFs through the reaction between amino/hydroxyl groups on chitosan and CHTAC, and approximately 0.98 CHTAC molecule with 0.98 R4N+ group were immobilized on each chitosan monomer. Additionally, these R4N+ on QECFs played a crucial role in the removal of DCF.


Asunto(s)
Antiinflamatorios no Esteroideos , Quitosano , Diclofenaco , Aguas Residuales , Contaminantes Químicos del Agua , Quitosano/química , Diclofenaco/química , Adsorción , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Concentración de Iones de Hidrógeno , Antiinflamatorios no Esteroideos/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Temperatura , Epiclorhidrina/química
2.
Ecotoxicol Environ Saf ; 270: 115869, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141338

RESUMEN

To effectively characterize natural zeolite powder (ZP) and faujasite zeolite (FAU) as adsorbents to remove a wide variety of organic micropollutants, quantitative structure-activity relationship (QSAR) models for the adsorption of zeolites were developed. For this purpose, batch isotherms were performed to measure the adsorption affinity (Kd) between zeolite and organic micropollutants, and the measured Kd values were used as a dependent variable in the QSAR modeling. In the modeling, the concept of a linear free energy relationship (LFER) was employed and used either empirically measured or in silico calculated descriptors. Modeling results based on empirical descriptors showed that log Kd values for ZP could be predicted with R2 = 0.949 and standard error (SE) = 0.137 log units, and for FAU, R2 = 0.895 and SE = 0.144 log units. A test set was used to validate the models developed by the training set. The predictabilities of the models for the test set were R2 = 0.907 and SE = 0.209 log units for ZP and R2 = 0.784 and SE = 0.236 log units for FAU, indicating that the models have reasonable robustness and predictability. Also, we showed that in silico-based descriptors could be applied to the prediction. These findings may help determine the general coverage of ZP and FAU zeolites and identify suitable applications.


Asunto(s)
Zeolitas , Zeolitas/química , Adsorción , Relación Estructura-Actividad Cuantitativa
3.
Environ Res ; 228: 115882, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37060991

RESUMEN

Herein, a fixed-bed high-capacity/high-rate (HC/HR) hybrid column was developed using commercial ion-exchange beads (IEBs) and ion-exchange fibers (IEFs). The as-fabricated HC/HR hybrid column exhibited excellent breakthrough bed volume (BV) and utilization efficiency of capacity (UEC) at a high service flow rate (SFR) for the adsorption of Cd(II). The IEBs displayed a high adsorption capacity of 235.2 ± 9.8 mg g-1 and slow adsorption kinetics (k2 = 0.0001 g mg-1 min-1) for the sorption of Cd(II); meanwhile, the IEFs showed a maximum adsorption capacity of only 146.3 ± 7.5 mg g-1, which is lower than that of the IEBs, but fast kinetics (k2 = 0.0130 g mg-1 min-1). At an SFR of 104.23 BV h-1, the HC/HR hybrid column showed excellent performance for the sorption of Cd(II), having a high breakthrough BV of 1009.11 and a UEC of 92.86%; these values are much higher than those of the IEB-packed column. Furthermore, at an increased SFR (318.47 BV h-1), the HC/HR hybrid column maintained its high performance, demonstrating a breakthrough BV of 568.80 and UEC of 83.90%. The regeneration experiment indicates that 97% of the initial capacity was retained. Thus, the HC/HR hybrid column could easily be applied to existing column systems and shows promising performance in ion-exchange processes.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cadmio , Intercambio Iónico , Adsorción , Cinética
4.
Environ Res ; 225: 115593, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863649

RESUMEN

The enormous production of fruit waste and the generation of countless organic micropollutants are serious environmental problems. To solve the problems, the biowastes, i.e., orange, mandarin, and banana peels, were used as biosorbents to remove the organic pollutants. In this application, the difficult challenge is knowing the degree of adsorption affinity of biomass for each type of micropollutant. However, since there are numerous micropollutants, it requires enormous material consumption and labor to physically estimate the adsorbability of biomass. To address this limitation, quantitative structure-adsorption relationship (QSAR) models for the adsorption assessment were established. In this process, the surface properties of each adsorbent were measured with instrumental analyzers, their adsorption affinity values for several organic micropollutants were determined through isotherm experiments, and QSAR models for each adsorbent were developed. The results showed that the tested adsorbents had significant adsorption affinity for cationic and neutral micropollutants, while the anionic one had low adsorption. As a result of the modeling, it was found that the adsorption could be predicted for a modeling set with an R2 of 0.90-0.915, and the models were validated via the prediction of a test set that was not included in the modeling set. Also, using the models, the adsorption mechanisms were identified. It is speculated that these developed models can be used to rapidly estimate adsorption affinity values for other micropollutants.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Frutas/química , Contaminantes Químicos del Agua/análisis , Biomasa , Purificación del Agua/métodos
5.
J Hazard Mater ; 451: 131206, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931220

RESUMEN

Herein, we report amino functionalized thermally stable graphene oxide-based dendritic adsorbent (GODA) with the highest sorption capacity ever recorded for platinum group elements (PGEs), including platinum (Pt(IV), PtCl62-) and palladium (Pd(II), PdCl42-), from highly acidic aqueous solutions. The GODA was designed and synthesized to have fully ionized amine binding sites and was characterized in detail. The detail batch adsorption experiment along with kinetic, isotherm, and thermodynamic studies were carried out to investigate the adsorption efficacy of GODA. For both Pt(IV) and Pd(II), the experimental data are more accurately fitted with the pseudo-second-order and the intraparticle diffusion kinetic models and Langmuir isotherm model as compared to the pseudo-first-order kinetic model and Freundlich and Temkin isotherm models, respectively. The material showed the highest ever adsorption capacities of 827.8 ± 27.7 mg/g (4.24 ± 0.00 mmol/g) and 890.7 ± 29.1 mg/g (8.37 ± 0.00 mmol/g) for Pt(IV) and Pd(II), respectively, at pH 1. The adsorption equilibriums were achieved within 70 min and 65 min for Pt(IV) and Pd(II), respectively. The thermodynamic parameters indicate that the adsorptions of both metals are spontaneous. The binding mechanisms are considered to be electrostatic interactions, hydrogen bonding, cationic-π bonding, and surface complexation between the sorbent and the sorbates. Furthermore, the as-prepared GODA exhibited high thermal stability and significant acid-resistance at pH 1. The GODA demonstrated excellent regeneration and reusability for Pt(IV) and Pd(II) over five adsorption/desorption cycles, indicating its excellence in practical applications.

6.
Chemosphere ; 319: 138042, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736835

RESUMEN

Activated carbon fiber (ACF) has received increasing attention as an adsorbent due to its excellent surface properties. However, the adsorption mechanism of ACF for micropollutants, especially those in ionic forms, has not been sufficiently characterized to date. Therefore, the adsorption property of ACF was characterized using isotherm experiments and linear free energy relationship (LFER). For the experiments, adsorption affinities of thirty-five chemicals, i.e., pharmaceuticals and endocrine-disrupting chemicals, on ACF were estimated. Afterward, the adsorption affinities were used as dependent variables to build the LFER modeling. Finally, three isolated models for each chemical species, i.e., cations, anions, and neutrals, and a comprehensive model for the whole dataset were developed. The LFER results revealed that the models for anionic and neutral compounds have high predictabilities in R2 of 0.97 and 0.96, respectively, while that for cations has a slightly lower R2 of 0.72. In the comprehensive model including cationic, anionic, and neutral compounds, the accuracy of it is 0.81. From the developed LFER model based on the whole dataset, the adsorption mechanisms of ACF for the selected substances could be interpreted, in which the terms of hydrophobic interaction, hydrogen bonding basicity, and anionic Coulombic force of the compounds were identified as the predominant interactions with ACF.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Carbón Orgánico , Adsorción , Fibra de Carbono , Cationes/química , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/química
7.
J Environ Manage ; 334: 117507, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36809737

RESUMEN

Yeast is ubiquitous and may act as a solid phase in natural aquatic systems, which may affect the distribution of organic micropollutants (OMs). Therefore, it is important to understand the adsorption of OMs on yeast. Therefore, in this study, a predictive model for the adsorption values of OMs on the yeast was developed. For that, an isotherm experiment was performed to estimate the adsorption affinity of OMs on yeast (i.e., Saccharomyces cerevisiae). Afterwards, quantitative structure-activity relationship (QSAR) modeling was performed for the purpose of developing a prediction model and explaining the adsorption mechanism. For the modeling, empirical and in silico linear free energy relationship (LFER) descriptors were applied. The isotherm results showed that yeast adsorbs a wide range of OMs, but the magnitude of Kd strongly depends on the types of OMs. The measured log Kd values of the tested OMs ranged from -1.91 to 1.1. Additionally, it was confirmed that the Kd measured in distilled water is comparable to that measured in real anaerobic or aerobic wastewater (R2 = 0.79). In QSAR modeling, the Kd value could be predicted by the LFER concept with an R2 of 0.867 by empirical descriptors and an R2 of 0.796 by in silico descriptors. The adsorption mechanisms of yeast for OMs were identified in individual correlations between log Kd and each descriptor: Dispersive interaction, hydrophobicity, hydrogen-bond donor, and cationic Coulombic interaction of OMs attract the adsorption, while the hydrogen-bond acceptor and anionic Coulombic interaction of OMs act as repulsive forces. The developed model can be used as an efficient method to estimate OM adsorption to yeast at a low level of concentration.


Asunto(s)
Saccharomyces cerevisiae , Contaminantes Químicos del Agua , Adsorción , Relación Estructura-Actividad Cuantitativa , Cationes , Hidrógeno , Contaminantes Químicos del Agua/química
8.
J Hazard Mater ; 424(Pt B): 127481, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34666292

RESUMEN

A simple, green approach to recover NiMnCoC2O4 as an electrode material for high-performance pseudocapacitors from spent LiNiMnCoO2 (NMC) batteries is proposed. Four strategic metals (Li, Ni, Co, and Mn) were leached from spent NMC batteries using several organic acids as model green leachants. Among the various candidates of green leaching agents, 2 M citric acid and 5 wt% glucose were selected as the leachant and reductant, respectively. Microwave irradiation was conducted during the leaching step to maximize the performance of the leaching rate and efficiency. The leaching efficiencies within 0.5 h for Ni(II), Li(I), Mn(II), and Co(II) were 90.7 ± 1.6%, 98.3 ± 2.4%, 94.9 ± 4.3%, and 95.6 ± 1.4%, respectively, and were thus as efficient as using aqua regia leaching. After the leaching process, divalent metal ions, that is, Ni(II), Co(II), and Mn(II), were immediately separated at room temperature using oxalic acid. The recovered samples were not further treated and used directly for energy storage applications. The recovered NiMnCoC2O4⋅nH2O has been demonstrated as a promising electrode for pseudocapacitors, providing a specific capacitance of 1641 F/g, good rate-retention capability (80% of low-current capacitance), and good cycle stability over 4000 charge-discharge cycles.

9.
J Hazard Mater ; 423(Pt B): 127214, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34551369

RESUMEN

Water-soluble organic acids (e.g., acetic acid, acrylic acid, and ascorbic acid), as green leachants, have been applied to leach strategic metals (Ni, Li, Mn, and Co) from spent lithium-ion batteries (LIBs). Organic acid-based linear free energy relationship models were developed and simulated to predict the feasibility of the leaching efficiency for each of the strategic metals based on in silico calculated descriptors. The developed models, with accuracy (R2) of 0.747-0.831, reveal that hydrogen bond acidity of organic acids promotes the leaching efficiency, whereas molecular volume or excess molar refraction inhibits the efficiency. Furthermore, toxicity (lethal dose 50%) of organic acids was discussed along with the predicted leaching efficiency to explore more green and efficient organic acids. Considering both toxicity and leaching efficiency, citric acid was selected as a green and efficient leachant. To more improve the leaching performance (rate and efficiency) of citric acid, glucose as a green reductant and microwave treatment were additionally applied. Under the selected conditions, the leaching efficiencies after 1 h for Ni, Li, Mn, and Co were enhanced up to 98.3%, 99.1%, 98.7%, and 97.7%, respectively.

10.
J Hazard Mater ; 422: 126940, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34419850

RESUMEN

The purpose of this study was to fabricate quaternized polyethylenimine-cellulose fibers (QPCFs) for the fast recovery of Au(I) from alkaline e-waste leachate. QPCFs were prepared by quaternizing PEI-modified cellulose fibers using a (3-chloro-2-hydroxypropyl)trimethylammonium chloride solution. The maximum Au(I) adsorption capacity of QPCFs was estimated to be 109.87 ± 3.67 mg/g at pH 9.5 using the Langmuir model. The values of k1 and k2 calculated by the pseudo-first and pseudo-second-order models were 1.79 ± 0.15 min-1 and 0.045 ± 0.003 g/mg min, respectively. Adsorption equilibrium was reached within 5 min. Thermodynamic studies revealed that the Au(I) adsorption process by the QPCFs was spontaneous (ΔG° < 0) and exothermic (ΔH° < 0). The characterization and adsorption mechanism of QPCFs were investigated by Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectrometry. Quaternary amine sites were well developed in the QPCFs. Oxidation or reduction of adsorbed Au(I) was not observed. When QPCFs were applied to the solution obtained by bioleaching of e-waste, the recovery efficiencies of Au and Cu were 61.7 ± 3.1% and 11.1 ± 2.9%, respectively, indicating that QPCFs have Au selectivity. Therefore, QPCFs are suitable for actual wastewater applications because of their high adsorption performance and fast adsorption rate.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Celulosa , Concentración de Iones de Hidrógeno , Cinética , Polietileneimina , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Contaminantes Químicos del Agua/análisis
11.
J Hazard Mater ; 426: 128087, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923381

RESUMEN

Cellulose can be considered as a raw material for the production of filters and adsorbents for the removal of micropollutants, particularly in pharmaceutical-based products. To study its applications, it is important to estimate the adsorptive interaction of cellulose with the targeted chemicals, and develop predictive models for the expandable estimation into various types of micropollutants. Therefore, the adsorption affinity between cellulose and micropollutants was measured through isotherm experiments, and a quantitative structure-adsorption relationship model was developed using the linear free energy relationship (LFER) equation. The results indicate that microcrystalline cellulose has a remarkably high adsorption affinity with cationic micropollutants. Moreover, it has interactions with neutral and anionic micropollutants, although they have relatively lower affinities than those of cations. Through a modeling study, an LFER model - comprising of excess molar refraction, polar interaction, molecular volume, and charge-related terms - was developed, which could be used to predict the adsorption affinity values with an R2 of 0.895. To verify the robustness and predictability of the model, internal and external validation studies were performed. The results proved that the model was reasonable and acceptable, with an SE = 0.207 log unit.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Adsorción , Aniones , Celulosa
12.
Sci Rep ; 11(1): 17836, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497318

RESUMEN

For the first time, a polyethyleneimine-impregnated alginate capsule (PEIIAC) with a high adsorption capacity is developed for the recovery of monovalent and trivalent gold from an acidic solution. The strategy results in a new type of adsorbent, polyethyleneimine impregnated alginate capsule (PEIIAC) with a core-shell structure having a large number of amine groups as cationic binding site, facilitating maximum uptake of anionic auric chloride. The maximum uptake of PEIIAC was 3078 and 929 mg/g for Au (III) and Au (I), respectively, are recordable compared to other reported adsorbents to date. The as-prepared material was executed to check the sorption efficacy for Au (III) and Au (I) in the pH range of 1-12. With an increment in pH, the uptake capacity for Au (III) increased, while the uptake capacity for Au (I) decreased. The FTIR, XRD, and XPS studies revealed that the gold adsorption mechanism includes ionic interactions and reduction, wherein the amine, hydroxyl, and carboxyl groups are involved. The capsule showed a higher adsorption efficiency than other reported sorbents, making the material applicable in acidic solutions for the recovery of Au (I) and Au (III).

13.
ACS Omega ; 6(20): 13057-13065, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34056455

RESUMEN

The ion/molecular imprinting technique is an efficient method for developing materials with high adsorption selectivity. However, it is still difficult to obtain an imprinted adsorbent with desirably high selectivity when the preparation processes are not well designed and optimized. In this present work, a chitosan-based ion-imprinted adsorbent was optimally prepared through Box-Behnken experimental design to achieve desirably high selectivity for Pd anions (PdCl4 2-) from aqueous solutions with high acidity. The dosage of epichlorohydrin (ECH) used in the first and second steps of cross-linking as well as the pH of the imprinting reaction medium is likely one of the key factors affecting the selectivity of the synthesized ion-imprinted chitosan adsorbent, which were selected as factors in a three-level factorial Box-Behnken design. As a result, the effects of these three factors on Pd(II) selectivity were able to be described by using a second-order polynomial model with a high regression coefficient (R 2; 0.996). The obtained optimal conditions via the response surface methodology were 0.10% (v/v) of first cross-linking ECH, an imprinting pH of 1.0, and 1.00% of second cross-linking ECH. Competitive adsorption was performed to investigate the selectivities of the ion-imprinted chitosan adsorbents prepared under the optimal conditions. The selectivity coefficient of Pd(II) versus Pt(IV) (ßPd/Pt) of the Pd(II)-imprinted adsorbent was 115.83, much greater than that of the chitosan adsorbent without imprinting and various reported selective adsorbents. Therefore, the Box-Behnken design can be a useful method for optimizing the synthesis of ion-imprinted adsorbents with desirably high adsorptive selectivity for precious metals.

14.
Sci Total Environ ; 786: 147309, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-33975102

RESUMEN

Interest in ionic liquids (ILs), called green or designer solvents, has been increasing because of their excellent properties such as thermal stability and low vapor pressure; thus, they can replace harmful organic chemicals and help several industrial fields e.g., energy-storage materials production and biomaterial pretreatment. However, the claim that ILs are green solvents should be carefully considered from an environmental perspective. ILs, given their minimal vapor pressure, may not directly cause atmospheric pollution. However, they have the potential to cause adverse effects if leaked into the environment, for instance if they are spilled due to human mistakes or technical errors. To estimate the risks of ILs, numerous ILs have had their toxicity assessed toward several micro- and macro-organisms over the past few decades. Since the toxic effects of ILs depend on the method of estimating toxicity, it is necessary to briefly summarize and comprehensively discuss the biological effects of ILs according to their structure and toxicity testing levels. This can help simplify our understanding of the toxicity of ILs. Therefore, in this review, we discuss the key findings of toxicological information of ILs, collect some toxicity data of ILs to different species, and explain the influence of IL structure on their toxic properties. In the discussion, we estimated two different sensitivity values of toxicity testing levels depending on the experiment condition, which are theoretical magnitudes of the inherent sensitivity of toxicity testing levels in various conditions and their changes in biological response according to the change in IL structure. Finally, some perspectives, future research directions, and limitations to toxicological research of ILs, presented so far, are discussed.


Asunto(s)
Líquidos Iónicos , Humanos , Líquidos Iónicos/toxicidad , Compuestos Orgánicos , Solventes , Pruebas de Toxicidad , Presión de Vapor
15.
J Hazard Mater ; 411: 125124, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-33858098

RESUMEN

It is of great importance to predict the adsorption of micropollutants onto CNTs, which is not only useful for exploring their potential adsorbent applications, but also helpful for better understanding their fate and risks in aquatic environments. This study experimentally examined the adsorption affinities of thirty-one micropollutants on four multi-walled CNTs (MWCNTs) with different functional groups (non-functionalized, -COOH, -OH, and -NH2). The properties of each adsorbent were predicted based on the linear free energy relationship (LFER) model. The experimental results showed that MWCNTs-COOH has remarkable adsorption affinities for positively charged compounds (1.996-3.203 log unit), whereas MWCNTs-NH2 has high adsorption affinities for negatively charged compounds (1.360-3.073 log unit). Regarding neutral compounds, there was no significant difference in adsorption affinities of all types of CNTs. According to modeling results, the adsorption affinity can be accurately predicted using LFER models with R2 in the range of 0.81-0.91. Based on the developed models, the adsorption mechanism and contribution of individual intermolecular interactions to the overall adsorption were interpreted. For non-functionalized MWCNTs, molecular interactions induced by molecular volume and H-bonding basicity predominantly contribute to adsorption, whereas for functionalized MWCNTs, the Coulombic interaction due to the charges is an important factor.

16.
Environ Res ; 192: 110271, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002506

RESUMEN

The disposal of bio-waste (e.g., Corynebacterium glutamicum) produced by the fermentation industry is a serious problem and has a negative impact on economic returns. Some fermentation waste can be recycled as livestock feed, but much cannot be used. Therefore, other recycling methods must be developed to increase its applications, for example, as an environmentally friendly adsorbent for the removal or recovery of chemicals. To broaden its application as an adsorbent, we carried out comprehensive experimental and theoretical analysis. From the experiments, adsorption affinity values between C. glutamicum and micropollutants were measured, and, based on the experimental values, we developed a predictive model. The experimental results reveal that the degree of adsorption is dependent on the structural properties of the micropollutants. In particular, the adsorbent has remarkable adsorption ability toward cations, whereas anionic and neutral compounds interact weakly with the adsorbent. In addition, we found that adsorption is affected by the sodium chloride concentration. Briefly, an increase in salt concentration increases the adsorption of anions, whereas the opposite behavior is observed for cations. In contrast, the adsorption of neutral compounds was not affected by the presence of salt. The modeling studies revealed that a linear free energy relationship model can be used to predict the adsorption affinity. Based on the developed model, we found that hydrogen-bond basicity, anionic coulombic interactions, and molecular volume are the main contributing factors to the adsorption model. However, to achieve the best predictability (a coefficient of determination (R2) of 0.902), additional parameters, such as the dipolarity/polarizability and dispersive interaction, should be included. This indicates that adsorption is a product of complex interactions.


Asunto(s)
Corynebacterium glutamicum , Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cationes , Fermentación , Concentración de Iones de Hidrógeno , Cinética , Eliminación de Residuos Líquidos
17.
J Hazard Mater ; 401: 123352, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32659579

RESUMEN

Metal-containing wastes in aquatic environments lead to public health hazards and valuable resource lose. Metal-bearing wastewater must be treated to remove heavy metals or recover precious metals. To achieve these, target-tunable adsorbents that bind cationic and anionic metal species were developed through facile polyelectrolyte complexation using polyethylenimine (PEI) and polyacrylic acid (PAA). Utilizing the properties of the two polyelectrolytes and pKa variabilities, stable tunable adsorbents were fabricated in water without additional solvents. The homogenous complex adsorbents were strategically synthesized via dissolution in 0.1 M NaOH and drop-wise addition of 1 M HCl, followed by crosslinking with glutaraldehyde. Consequently, the adsorbents in alternating weight ratios of 4:1 and 1:4 (PEI:PAA) exhibited good tunability and adsorption properties. The maximum single metal adsorption capacities were 1609.7 ± 49.6 and 558.6 ± 9.67 mg/g for gold and cadmium, respectively. The pseudo-second-order model fitted the kinetics data more appropriately and was recognized as the rate controlling step. In a binary mixture, gold selectivity was observed to be influenced by adsorption-reduction mechanism, which was elucidated by XRD and XPS. Moreover, the adsorbents demonstrated NO3- sequestration properties, a feat deemed important for environmental remediation of nitrate ions. Finally, sequential separation was achieved with ethylenediaminetetraacetic acid (EDTA) and acidified thiourea.

18.
Sci Rep ; 10(1): 13905, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807914

RESUMEN

The present study proposes a simple yet effective method of cellulose coating onto chitosan (CS) hydrogel beads and application thereof as drug carriers. The beads were coated with cellulose dissolved in 1-ethyl-3-methylimidazolium acetate, an ionic liquid (IL) via a one-pot one-step process. Water molecules present in the CS beads diffused outward upon contact with the cellulose-IL mixture and acted as an anti-solvent. This allowed the surface of the beads to be coated with the regenerated cellulose. The regenerated cellulose was characterized by FE-SEM, FT-IR, and XRD analyses. To test potential application of the cellulose-coated CS hydrogel beads as a drug carrier, verapamil hydrochloride (VRP), used as a model drug, was impregnated into the beads. When the VRP-impregnated beads were immersed in the simulated gastric fluid (pH 1.2), the VRP was released in an almost ideal linear pattern. This easily fabricated cellulose-coated CS beads showed the possibility for application as carriers for drug release control.


Asunto(s)
Celulosa/química , Quitosano/química , Portadores de Fármacos/química , Hidrogeles/química , Líquidos Iónicos/química , Microesferas , Celulosa/ultraestructura , Liberación de Fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Verapamilo/farmacología , Difracción de Rayos X
19.
Bioresour Technol ; 316: 123961, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32795871

RESUMEN

In this study, a new recirculation column reactor system for arsenate removal using a polyethylenimine coated bacterial biosorbent was developed. Solution pH was the most important factor in process design and operation. In order to control and optimize solution pH favorable for arsenate removal, a pH control and recirculation system was added to a column reactor. The effects of recycle ratio, initial arsenate concentration, and flow rate on the arsenate removal performance of the developed process were examined. Thomas and Yoon-Nelson models were used to interpret the breakthrough curve of arsenate removal. The maximum arsenate adsorption amount of the new reactor was determined to be 50.86 mg/g by the Thomas model. Importantly, the new reactor showed unimpeded adsorption performance compared with that in the batch experiments. The desorption study also showed excellent reusability. The results indicated that the newly developed process could be a promising application prospect for removing arsenate.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Purificación del Agua , Adsorción , Arseniatos , Concentración de Iones de Hidrógeno , Cinética , Estudios Longitudinales
20.
Environ Pollut ; 266(Pt 3): 115167, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32688197

RESUMEN

Numerous studies have sought to address the extraction of metals from printed circuit boards by employing bioleaching process. However, separation and recovery of the bioleached metals have always been a bottleneck. Herein, we demonstrate effective recovery of bioleached Au and Cu via selective separation using ion exchange resins. pH-edge experiments revealed high affinity of Amberjet™ 4200 resin towards Au (adsorption capacity > 98%) over the entire pH range from pH 2-10, whereas Amberlite IRC-86 resin recorded very high Cu adsorption at around pH 5. Therefore, a two-step sequential process was designed for the effective separation and recovery of Au and Cu. In the 1st step, Au was completely recovered by using the Amberjet™ 4200 at the natural pH of 7.5. Subsequently, the Au-free solution was adjusted to pH 5 and Cu was recovered by using Amberlite IRC-86 (2nd step). Consequently, 98.7% Au and 78.9% Cu were successfully recovered. Therefore, this study provides a technical guideline for the selective recovery of Au and Cu from bioleached wastewater, which promotes effective waste minimization and efficient resource recovery.


Asunto(s)
Cobre , Oro , Adsorción , Resinas de Intercambio Iónico , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA