Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Fish Shellfish Immunol ; 149: 109618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729251

RESUMEN

An eight-week feeding trial was designed to assess which component of commensal Bacillus siamensis LF4 can mitigate SBM-induced enteritis and microbiota dysbiosis in spotted seabass (Lateolabrax maculatus) based on TLRs-MAPKs/NF-кB signaling pathways. Fish continuously fed low SBM (containing 16 % SBM) and high SBM (containing 40 % SBM) diets were used as positive (FM group) and negative (SBM group) control, respectively. After feeding high SBM diet for 28 days, fish were supplemented with B. siamensis LF4-derived whole cell wall (CW), cell wall protein (CWP), lipoteichoic acid (LTA) or peptidoglycan (PGN) until 56 days. The results showed that a high inclusion of SBM in the diet caused enteritis, characterized with significantly (P < 0.05) decreased muscular thickness, villus height, villus width, atrophied and loosely arranged microvillus. Moreover, high SBM inclusion induced an up-regulation of pro-inflammatory cytokines and a down-regulation of occludin, E-cadherin, anti-inflammatory cytokines, apoptosis related genes and antimicrobial peptides. However, dietary supplementation with CW, LTA, and PGN of B. siamensis LF4 could effectively alleviate enteritis caused by a high level of dietary SBM. Additionally, CWP and PGN administration increased beneficial Cetobacterium and decreased pathogenic Plesiomonas and Brevinema, while dietary LTA decreased Plesiomonas and Brevinema, suggesting that CWP, LTA and PGN positively modulated intestinal microbiota in spotted seabass. Furthermore, CW, LTA, and PGN application significantly stimulated TLR2, TLR5 and MyD88 expressions, and inhibited the downstream p38 and NF-κB signaling. Taken together, these results suggest that LTA and PGN from B. siamensis LF4 could alleviate soybean meal-induced enteritis and microbiota dysbiosis in L. maculatus, and p38 MAPK/NF-κB pathways might be involved in those processes.


Asunto(s)
Alimentación Animal , Bacillus , Dieta , Disbiosis , Enteritis , Enfermedades de los Peces , Microbioma Gastrointestinal , Glycine max , Lipopolisacáridos , Peptidoglicano , Ácidos Teicoicos , Animales , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Enteritis/veterinaria , Enteritis/inmunología , Enteritis/microbiología , Disbiosis/veterinaria , Disbiosis/inmunología , Bacillus/fisiología , Bacillus/química , Microbioma Gastrointestinal/efectos de los fármacos , Dieta/veterinaria , Glycine max/química , Lipopolisacáridos/farmacología , Ácidos Teicoicos/farmacología , Peptidoglicano/farmacología , Peptidoglicano/administración & dosificación , Lubina/inmunología , Probióticos/farmacología , Probióticos/administración & dosificación , Suplementos Dietéticos/análisis , Distribución Aleatoria
2.
Artículo en Inglés | MEDLINE | ID: mdl-38789900

RESUMEN

Commensal-derived peptidoglycan (PG) or lipoteichoic acid (LTA) can improve the growth, immunity, and intestinal health of fish, but it is not clear whether the two components have synergistic effects. To clarify this, grouper (Epinephelus coioides) was fed basal diet (CG) or diets containing 1.0 × 108 CFU/g heat-inactivated SE5 (HIB), PG (21.30 mg/kg), LTA (6.70 mg/kg), mixture (PL1) of PG (10.65 mg/kg) and LTA (3.35 mg/kg), and mixture (PL2) of PG (21.30 mg/kg) and LTA (6.70 mg/kg). Improved growth performance and feed utilization were observed in groups PG, LTA, PL1, and PL2, and the optimum growth performance was recorded in group PL1. Furthermore, improved serum alkaline phosphatase (AKP) activity and immunoglobulin M (IgM) and complement C3 (C3) contents were observed in all treatments, and the AKP activity in group PL1 was significantly superior to that of groups PG and LTA. Although PG and LTA alone or in combination exert comparable effects on intestinal microbiota and physical structure, obviously enhanced intestinal protease activity was observed in group PL1. The combined efficacy of PL1 could further potentiate the immune response by modulating the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and upregulating the expression of antimicrobial peptides (epinecidin-1, hepcidin-1, and ß-defensin) as well as IgM. At the same time, group PL1 could further mitigate intestinal inflammation by downregulating pro-inflammatory cytokines and upregulating anti-inflammatory cytokines. In conclusion, probiotic B. pumilus SE5-derived PG and LTA mixture (10.65 mg/kg PG and 3.35 mg/kg LTA) exhibits better potential for improving the growth performance, intestinal health, and immune function compared to another mixture (21.30 mg/kg PG and 6.70 mg/kg LTA) and PG or LTA alone in grouper.

3.
Fish Shellfish Immunol ; 149: 109551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599363

RESUMEN

The present study aimed to evaluate the effect of king oyster mushroom (Pleurotus eryngii) root waste and soybean meal co-fermented protein (CFP) on growth performance, feed utilization, immune status, hepatic and intestinal health of largemouth bass (Micropterus salmoides). Largemouth bass (12.33 ± 0.18 g) were divided into five groups, fed with diets containing 0 %, 5 %, 10 %, 15 % and 20 % CFP respectively for 7 weeks. The growth performance and dietary utilization were slightly improved by the supplementation of CFP. In addition, improved immunoglobulin M (IgM) content and lysozyme activity in treatments confirm the enhancement of immunity in fish by the addition of CFP, especially in fish fed 20 % CFP (P < 0.05). Furthermore, CFP significantly improved liver GSH (glutathione) content in groups D10 and D15 (P < 0.05), and slightly improved total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity while slightly reduced malondialdehyde (MDA) content. Simultaneously, the upregulation of lipolysis-related genes (PPARα, CPT1 and ACO) expression and downregulation of lipid synthesis-related genes (ACC and DGAT1) expression was recorded in the group D20 compared with the control (P < 0.05), which were consistent with the decreased liver lipid contents, suggests that lipid metabolism was improved by CFP. In terms of intestinal structural integrity, ameliorated intestinal morphology in treatments were consistent with the upregulated Occludin, Claudin-1 and ZO-1 genes expression. The intestinal pro-inflammatory cytokines (TNF-α and IL-8) expression were suppressed while the anti-inflammatory cytokines (IL-10 and TGF-ß) were activated in treatments. The expression of antimicrobial peptides (Hepcidin-1, Piscidin-2 and Piscidin-3) and intestinal immune effectors (IgM and LYZ) were slightly up-regulated in treatments. Additionally, the relative abundance of intestinal beneficial bacteria (Firmicutes) increased while the relative abundance of potential pathogenic bacteria (Fusobacterium and Proteobacteria) decreased, which indicated that the intestinal microbial community was well-reorganized by CFP. In conclusion, dietary CFP improves growth, immunity, hepatic and intestinal health of largemouth bass, these data provided a theoretical basis for the application of this novel functional protein ingredient in fish.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Suplementos Dietéticos , Glycine max , Hígado , Pleurotus , Animales , Lubina/inmunología , Lubina/crecimiento & desarrollo , Alimentación Animal/análisis , Dieta/veterinaria , Pleurotus/química , Glycine max/química , Hígado/inmunología , Hígado/efectos de los fármacos , Hígado/metabolismo , Suplementos Dietéticos/análisis , Intestinos/inmunología , Intestinos/efectos de los fármacos , Fermentación , Inmunidad Innata/efectos de los fármacos , Distribución Aleatoria , Raíces de Plantas/química , Relación Dosis-Respuesta a Droga
4.
BMC Urol ; 24(1): 89, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632572

RESUMEN

•we report the case of a 36-year-old female patient who presented to our hospital with a diagnosis of cystitis glandularis manifesting as a vesicovaginal fistula. She underwent cystoscopic biopsy at a local hospital, but anti-inflammatory treatment was ineffective, and the patient was experiencing low urination frequency and urgency, as well as pain. The patient underwent laparoscopic repair of a cystoscopy-confirmed vesicovaginal fistula. After surgery, the patient experienced a paroxysm of Crohn's disease with multiple small bowel fistulas and erosion of the external iliac vessels that ruptured to form an external iliac vessel small bowel fistula. The fistula was confirmed by surgical exploration, and the patient eventually died.


Asunto(s)
Enfermedad de Crohn , Cistitis , Fístula Intestinal , Fístula Vesicovaginal , Femenino , Humanos , Adulto , Enfermedad de Crohn/complicaciones , Fístula Vesicovaginal/complicaciones , Fístula Intestinal/cirugía , Abdomen , Cistitis/complicaciones
5.
Fish Physiol Biochem ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411877

RESUMEN

Herbs and their by-products are important traditional medicines and food supplements; they provide numerous beneficial effects for animals. Consequently, probiotics are living cell organisms, nontoxic, and friendly microbes. Probiotics have numerous beneficial activities such as inhibition of pathogens, enhancement of the immune system, growth, disease resistance, improving water quality, reducing toxic effects, synthesis of vitamins, prevention of cancer, reduction of irritable bowel syndrome, and more positive responses in animals. Herbal and probiotic combinations have more active responses and produce new substances to enhance beneficial responses in animals. Herbal and probiotic mixture report is still limited applications for animals. However, the mechanisms by which they interact with the immune system and gut microbiota in animals are largely unclear. This review provides some information on the effect of herbal and probiotic blend on animals. This review discusses current research advancements to fulfill research gaps and promote effective and healthy animal production.

6.
Fish Shellfish Immunol ; 145: 109370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216004

RESUMEN

Live commensal Bacillus siamensis LF4 showed reparative potentials against high SM-induced negative effects, but whether its paraprobiotic (heat-killed B. siamensis, HKBS) and postbiotic (cell-free supernatant, CFS) forms had reparative functions and potential mechanisms are not yet known. In this study, the reparative functions of HKBS and CFS were investigated by establishing an injured model of spotted seabass (Lateolabrax maculatus) treated with dietary high soybean meal (SM). The results showed that HKBS and CFS effectively mitigated growth suppression, immune deficiency, and liver injury induced by dietary high SM. Simultaneously, HKBS and CFS application positively shaped intestinal microbiota by increased the abundance of beneficial bacteria (Fusobacteria, Firmicutes, Bacteroidota, and Cetobacterium) and decreased harmful bacteria (Proteobacteria and Plesiomonasare). Additionally, HKBS and CFS improved SM-induced intestinal injury by restoring intestinal morphology, upregulating the expression of tight junction proteins, anti-inflammatory cytokines, antimicrobial peptides, downregulating the expression of pro-inflammatory cytokines and apoptotic proteins. Furthermore, HKBS and CFS intervention significantly activated TLR2, TLR5 and MyD88 signaling, and eventually inhibited p38 and NF-κB pathways. In conclusion, paraprobiotic (HKBS) and postbiotic (CFS) from B. siamensis LF4 can improve growth, immunity, repair liver and intestinal injury, and shape intestinal microbiota in L. maculatus fed high soybean meal diet, and TLRs/p38 MAPK/NF-κB signal pathways might be involved in those processes. These results will serve as a base for future application of paraprobiotics and postbiotics to prevent and repair SM-induced adverse effects in fish aquaculture.


Asunto(s)
Bacillus , Lubina , FN-kappa B , Animales , Harina , Dieta , Hígado/metabolismo , Citocinas/metabolismo , Alimentación Animal/análisis
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123763, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198994

RESUMEN

In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Animales , Colorantes Fluorescentes/química , Pez Cebra , Sulfuro de Hidrógeno/análisis , Mitocondrias/química , Imagen Óptica , Células HeLa
8.
Analyst ; 149(4): 1280-1288, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38226660

RESUMEN

In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 µM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 µM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/química , Simulación del Acoplamiento Molecular , Células HeLa , Microscopía Fluorescente
9.
J Fish Dis ; 47(5): e13916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38226408

RESUMEN

Nanotechnology is an expanding and new technology that prompts production with nanoparticle-based (1-100 nm) organic and inorganic materials. Such a tool has an imperative function in different sectors like bioengineering, pharmaceuticals, electronics, energy, nuclear energy, and fuel, and its applications are helpful for human, animal, plant, and environmental health. In exacting, the nanoparticles are synthesized by top-down and bottom-up approaches through different techniques such as chemical, physical, and biological progress. The characterization is vital and the confirmation of nanoparticle traits is done by various instrumentation analyses like UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, X-ray diffraction, atomic force microscopy, annular dark-field imaging, and intracranial pressure. In addition, probiotics are friendly microbes which while administered in sufficient quantity confer health advantages to the host. Characterization investigation is much more significant to the identification of good probiotics. Similarly, haemolytic activity, acid and bile salt tolerance, autoaggregation, antimicrobial compound production, inhibition of pathogens, enhance the immune system, and more health-beneficial effects on the host. The synergistic effects of nanoparticles and probiotics combined delivery applications are still limited to food, feed, and biomedical applications. However, the mechanisms by which they interact with the immune system and gut microbiota in humans and animals are largely unclear. This review discusses current research advancements to fulfil research gaps and promote the successful improvement of human and animal health.


Asunto(s)
Antiinfecciosos , Enfermedades de los Peces , Nanopartículas del Metal , Nanopartículas , Drogas Veterinarias , Humanos , Animales , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología
10.
Fish Physiol Biochem ; 50(2): 635-651, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38165563

RESUMEN

Largemouth bass (Micropterus salmoides) were fed with three diets containing 6%, 12%, and 18% wheat starch for 70 days to examine their impacts on growth performance, glucose and lipid metabolisms, and liver and intestinal health. The results suggested that the 18% starch group inhibited the growth, and improved the hepatic glycogen content compared with the 6% and 12% starch groups (P < 0.05). High starch significantly improved the activities of glycolysis-related enzymes, hexokinase (HK), glucokinase (GK), phosphofructokinase (PFK), and pyruvate kinase (PK) (P < 0.05); promoted the mRNA expression of glycolysis-related phosphofructokinase (pfk); decreased the activities of gluconeogenesis-related enzymes, pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PEPCK); and reduced the mRNA expression of gluconeogenesis-related fructose-1,6-bisphosphatase-1(fbp1) (P < 0.05). High starch reduced the hepatic mRNA expressions of bile acid metabolism-related cholesterol hydroxylase (cyp7a1) and small heterodimer partner (shp) (P < 0.05), increased the activity of hepatic fatty acid synthase (FAS) (P < 0.05), and reduced the hepatic mRNA expressions of lipid metabolism-related peroxisome proliferator-activated receptor α (ppar-α) and carnitine palmitoyltransferase 1α (cpt-1α) (P < 0.05). High starch promoted inflammation; significantly reduced the mRNA expressions of anti-inflammatory cytokines transforming growth factor-ß1 (tgf-ß1), interleukin-10 (il-10), and interleukin-11ß (il-11ß); and increased the mRNA expressions of pro-inflammatory cytokine tumor necrosis factor-α (tnf-α), interleukin-1ß (il-1ß), and interleukin-8 (il-8) in the liver and intestinal tract (P < 0.05). Additionally, high starch negatively influenced the intestinal microbiota, with the reduced relative abundance of Trichotes and Actinobacteria and the increased relative abundance of Firmicutes and Proteobacteria. In conclusion, low dietary wheat starch level (6%) was more profitable to the growth and health of M. salmoides, while high dietary starch level (12% and 18%) could regulate the glucose and lipid metabolisms, impair the liver and intestinal health, and thus decrease the growth performance of M. salmoides.


Asunto(s)
Lubina , Glucosa , Animales , Glucosa/metabolismo , Almidón/farmacología , Lubina/fisiología , Triticum/metabolismo , Metabolismo de los Lípidos , Dieta/veterinaria , Hígado/metabolismo , Carbohidratos de la Dieta/metabolismo , Lípidos , Fosfofructoquinasas/metabolismo , ARN Mensajero/metabolismo
11.
Biol Trace Elem Res ; 202(1): 360-386, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37046039

RESUMEN

Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Plata/química , Nanotecnología , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Difracción de Rayos X , Antibacterianos
12.
Biol Trace Elem Res ; 202(3): 1264-1278, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37434037

RESUMEN

Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Animales , Zinc/farmacología , Antioxidantes , Óxido de Zinc/farmacología , Óxido de Zinc/química , Carpa Dorada , Nanopartículas del Metal/química , Extractos Vegetales/química , Nanopartículas/química , Moco , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/química
13.
Biology (Basel) ; 12(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38132324

RESUMEN

Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional and nature-based feed ingredients such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic animals are largely unclear. This review discusses basic and current research advancements to fill research gaps and promote effective and healthy aquaculture production.

14.
Fish Shellfish Immunol ; 141: 109010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37598736

RESUMEN

ß-conglycinin is a recognized factor in leading to intestinal inflammation and limiting application of soybean meal in aquaculture. Our previous study reported that heat-killed B. siamensis LF4 could effectively mitigate inflammatory response and apoptosis caused by ß-conglycinin in spotted seabass (Lateolabrax maculatus) enterocytes, but the mechanisms involved are not fully understood. In the present study, therefore, whole cell wall (CW), peptidoglycan (PG) and lipoteichoic acid (LTA) and cell-free supernatant (CFS) have been collected from B. siamensis LF4 and their mitigative function on ß-conglycinin-induced adverse impacts and mechanisms underlying were evaluated. The results showed that ß-conglycinin-induced cell injury, characterized with significantly decreased cell viability and increased activities of lactate dehydrogenase, glutamic oxaloacetic transaminase, glutamic propylic transaminase (P < 0.05), were reversed by subsequent heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS treatment. Enterocytes co-cultured with heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS (especially PG) significantly increased expressions of anti-inflammatory genes (IL-2, IL-4, IL-10 and TGF-ß1), tight junction proteins (ZO-1, occludin and claudin-b) and antimicrobial peptides (ß-defensin, hepcidin-1, NK-lysin and piscidin-5), and decreased expressions of pro-inflammatory genes (IL-1ß, IL-8 and TNF-α) and apoptosis-related genes (caspase 3, caspase 8 and caspase 9) (P < 0.05), indicating their excellent mitigation effects on ß-conglycinin-induced cell damages. In addition, heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS significantly increased TLR2 mRNA level (especially in PG treatment), and decreased MAPKs (JNK, ERK, p38 and AP-1) and NF-κB related genes expressions. In conclusion, heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS could modulating TLR2/MAPKs/NF-κB signaling and alleviating ß-conglycinin-induced enterocytes injury in spotted seabass (L. maculatus), and PG presented the best potential.

15.
Eur J Nucl Med Mol Imaging ; 50(11): 3425-3438, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328622

RESUMEN

PURPOSE: We investigated whether uptake of [18F] AlF-NOTA-FAPI-04 on positron emission tomography/computed tomography (PET/CT) could predict treatment response and survival in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: We prospectively evaluated 47 patients with histopathologically confirmed primary PDAC who provided pretreatment [18F] AlF-NOTA-FAPI-04 scans to detect fibroblast activation protein (FAP) on the tumor surface by uptake of [18F] AlF-NOTA-FAPI-04. PDAC specimens were immunohistochemically stained with cancer-associated fibroblast (CAF) markers. We obtained a second PET scan after one cycle of chemotherapy to study changes in FAPI uptake variables from before to during treatment. Correlations between baseline PET variables and CAF-related immunohistochemical markers were assessed with Spearman's rank test. Cox regression and Kaplan-Meier methods were used to assess relationships between disease progression and potential predictors. Receiver operating characteristic (ROC) curve analysis was used to define the optimal cut-off points for distinguishing patients according to good response vs. poor response per RECIST v.1.1. RESULTS: The FAPI PET variables maximum and mean standardized uptake values (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion FAP expression (TLF) were positively correlated with CAF markers (FAP, α-smooth muscle actin, vimentin, S100A4, and platelet-derived growth factor receptor α/ß, all P < 0.05). MTV was associated with survival in patients with inoperable PDAC (all P < 0.05). Cox multivariate regression showed that MTV was associated with overall survival (MTV hazard ratio [HR] = 1.016, P = 0.016). Greater changes from before to during chemotherapy in SUVmax, MTV, and TLF were associated with good treatment response (all P < 0.05). ΔMTV, ΔTLF, and ΔSUVmax had larger areas under the curve than ΔCA19-9 for predicting treatment response. Kaplan-Meier analysis showed that the extent of change in MTV and TLF from before to after treatment predicted progression-free survival, with cut-off values (based on medians) of - 4.95 for ΔMTV (HR = 8.09, P = 0.013) and - 77.83 for ΔTLF (HR = 4.62, P = 0.012). CONCLUSIONS: A higher baseline MTV on [18F] AlF-NOTA-FAPI-04 scans was associated with poorer survival in patients with inoperable PDAC. ΔMTV was more sensitive for predicting response than ΔCA19-9. These results are clinically meaningful for identifying patients with PDAC who are at high risk of disease progression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Progresión de la Enfermedad , Neoplasias Pancreáticas
16.
Fish Shellfish Immunol ; 137: 108797, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37149232

RESUMEN

ß-conglycinin and glycinin, two major heat-stable anti-nutritional factors in soybean meal (SM), have been suggested as the key inducers of intestinal inflammation in aquatic animals. In the present study, a spotted seabass intestinal epithelial cells (IECs) were used to compare the inflammation-inducing effects of ß-conglycinin and glycinin. The results showed that IECs co-cultured with 1.0 mg/mL ß-conglycinin for 12 h or 1.5 mg/mL glycinin for 24 h significantly decreased the cell viability (P < 0.05), and overstimulated inflammation and apoptosis response by significantly down-regulating anti-inflammatory genes (IL-2, IL-4, IL-10 and TGF-ß1) expressions and significantly up-regulated pro-inflammatory genes (IL-1ß, IL-8 and TNF-α) and apoptosis genes (caspase 3, caspase 8 and caspase 9) expressions (P < 0.05). Subsequently, a ß-conglycinin based inflammation IECs model was established and used for demonstrating whether commensal probiotic B. siamensis LF4 can ameliorate the adverse effects of ß-conglycinin. The results showed ß-conglycinin-induced cell viability damage was completely repaired by treated with 109 cells/mL heat-killed B. siamensis LF4 for ≥12 h. At the same time, IECs co-cultured with 109 cells/mL heat-killed B. siamensis LF4 for 24 h significantly ameliorated ß-conglycinin-induced inflammation and apoptosis by up-regulating anti-inflammatory genes (IL-2, IL-4, IL-10 and TGF-ß1) expressions and down-regulated pro-inflammatory genes (IL-1ß, IL-8 and TNF-α) and apoptosis genes (caspase 3, caspase 8 and caspase 9) expressions (P < 0.05). In summary, both ß-conglycinin and glycinin can lead to inflammation and apoptosis in spotted seabass IECs, and ß-conglycinin is more effective; commensal B. siamensis LF4 can efficiently ameliorate ß-conglycinin induced inflammation and apoptosis in IECs.


Asunto(s)
Interleucina-10 , Factor de Crecimiento Transformador beta1 , Animales , Caspasa 3/metabolismo , Interleucina-10/metabolismo , Caspasa 9 , Factor de Crecimiento Transformador beta1/metabolismo , Caspasa 8 , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-2 , Interleucina-4/metabolismo , Interleucina-8 , Proteínas de Soja/efectos adversos , Inflamación/inducido químicamente , Inflamación/veterinaria , Inflamación/metabolismo , Células Epiteliales/metabolismo
17.
Fish Shellfish Immunol ; 134: 108575, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36736639

RESUMEN

Yellow drum (Nibea albiflora), a commercially important fish species in the coastal regions of southeast China, is highly susceptible to red-head disease caused by Vibrio harveyi B0003. Probiotics have been shown to enhance disease resistance in fish, but whether commensal probiotics could improve of the resistance to red-head disease in yellow drum and possible mechanisms has yet not been reported. A six-week feeding trial was conducted to investigate the red-head disease resistance potentials of five probiotic candidates (Bacillus megaterium B1M2, B. subtilis B0E9, Enterococcus faecalis AT5, B. velezensis DM5 and B. siamensis B0E14), and the liver health, serum and skin immunities, gut and skin mucosal microbiota of yellow drum were determined to illustrate the possible mechanisms. The results showed that autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5, P < 0.05) effectively improved red-head disease resistance in yellow drum. Furthermore, B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) efficiently improve liver health by improving liver morphology and decreasing serum glutamic oxaloacetic transaminase and glutamic propylic transaminase activities pre and post challenged with V. harveyi B0003 (P < 0.05). B. subtilis B0E9 and E. faecalis AT5 led to significant improvement (P < 0.05) in the serum complement 3 content (un-detected after challenged with V. harveyi B0003), lysozyme activity and skin mucosal immunity (such as IL-6, IL-10 and lysozyme expression) pre and post challenged with V. harveyi B0003, which was generally consistent with the cumulative mortality after challenged with V. harveyi B0003. This induced activations of serum and skin mucosal immunities were consistent with the microbiota data showing that B. subtilis B0E9 and E. faecalis AT5 modulated the overall structure of intestinal and skin mucosal microbiota, and in particular, the relative abundance of potentially pathogenic Achromobacter decreased while beneficial Streptococcus, Rothia, and Lactobacillus increased in fish fed with B. subtilis B0E9 and E. faecalis AT5. Overall, autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) can improve liver health, serum and skin immunities (especially up-regulated lysozyme activity and inflammation-related genes expression), positively shape gut and skin mucosal microbiota, and enhance red-head disease resistance of yellow drum.


Asunto(s)
Enfermedades de los Peces , Microbiota , Perciformes , Probióticos , Animales , Resistencia a la Enfermedad , Bacillus subtilis , Inmunidad Mucosa , Enterococcus faecalis , Muramidasa , Probióticos/farmacología , Peces , Hígado
18.
Fish Shellfish Immunol ; 134: 108634, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36828198

RESUMEN

Antimicrobial peptides (AMPs) play an important role in modulating intestinal microbiota, and our previous study showed that autochthonous Baccilus siamensis LF4 could shape the intestinal microbiota of spotted seabass (Lateolabrax maculatus). In the present study, a spotted seabass intestinal epithelial cells (IECs) model was used to investigate whether autochthonous B. siamensis LF4 could modulate the expression of AMPs in IECs. And then, the IECs were treated with active, heat-inactivated LF4 and its supernatant to illustrate their AMPs inducing effects and the possible signal transduction mechanisms. The results showed that after 3 h of incubation with 108 CFU/mL B. siamensis LF4, lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), glutamic propylic transaminase (GPT) activities in supernatant decreased significantly and obtained minimum values, while supernatant alkaline phosphatase (AKP) activity, ß-defensin protein level and IECs Na+/K+-ATPase activity, AMPs (ß-defensin, hepcidin-1, NK-lysin, piscidin-5) genes expression increased significantly and obtained maximum values (P < 0.05). Further study demonstrated that the active, heat-inactivated LF4 and its supernatant treatments could effectively decrease the LDH, GOT, and GPT activities in IECs supernatant, increase AKP activity and ß-defensin (except LF4 supernatant treatment) protein level in IECs supernatant and Na+/K+-ATPase and AMPs genes expression in IECs. Treatment with active and heat-inactivated B. siamensis LF4 resulted in significantly up-regulated the expressions of TLR1, TLR2, TLR3, TLR5, NOD1, NOD2, TIRAP, MyD88, IRAK1, IRAK4, TRAF6, TAB1, TAB2, ERK, JNK, p38, AP-1, IKKα, IKKß and NF-κB genes. Treatment with B. siamensis LF4 supernatant also resulted in up-regulated these genes, but not the genes (ERK, JNK, p38, and AP-1) in MAPKs pathway. In summary, active, heat-inactivated and supernatant of B. siamensis LF4 can efficiently induce AMPs expression through activating the TLRs/NLRs-MyD88-dependent signaling, active and heat-inactivated LF4 activated both the downstream MAPKs and NF-κB pathways, while LF4 supernatant only activated NF-κB pathway.


Asunto(s)
FN-kappa B , beta-Defensinas , Animales , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Péptidos Antimicrobianos , beta-Defensinas/metabolismo , Factor de Transcripción AP-1/metabolismo , Transducción de Señal/fisiología , Células Epiteliales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
19.
BMC Oral Health ; 23(1): 48, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709299

RESUMEN

BACKGROUND: To investigate the inhibition mechanism of copper ions on Streptococcus mutans-Veillonella parvula dual biofilm. METHODS: S. mutans-V. parvula dual biofilm was constructed and copper ions were added at different concentrations. After the biofilm was collected, RNA-seq and qRT-PCR were then performed to get gene information. RESULTS: The coculture of S. mutans and V. parvula formed a significantly better dual biofilm of larger biomass than S. mutans mono biofilm. And copper ions showed a more significant inhibitory effect on S. mutans-V. parvula dual biofilm than on S. mutans mono biofilm when copper ions concentration reached 100 µM, and copper ions showed a decreased inhibitory effect on S. gordonii-V. parvula dual biofilm and S. sanguis-V.parvula dual biofilm than on the two mono biofilms as the concentration of copper ions increased. And common trace elements such as iron, magnesium, and zinc showed no inhibitory effect difference on S. mutans-V. parvula dual biofilm. The RNA-seq results showed a significant difference in the expression of a new ABC transporter SMU_651c, SMU_652c, SMU_653c, and S. mutans copper chaperone copYAZ. SMU_651c, SMU_652c, and SMU_653c were predicted to function as nitrite/nitrate transporter-related proteins, which suggested the specific inhibition of copper ions on S. mutans-V. parvula dual biofilm may be caused by the activation of S. mutans reactive nitrogen species. CONCLUSIONS: Streptococcus mutans and Veillonella parvula are symbiotic, forming a dual biofilm of larger biomass to better resist the external antibacterial substances, which may increase the virulence of S. mutans. While common trace elements such as iron, magnesium, and zinc showed no specific inhibitory effect on S. mutans-V. parvula dual biofilm, copper ion had a unique inhibitory effect on S. mutans-V. parvula dual biofilm which may be caused by activating S. mutans RNS when copper ions concentration reached 250 µM.


Asunto(s)
Streptococcus mutans , Oligoelementos , Humanos , Cobre/farmacología , Cobre/metabolismo , Oligoelementos/metabolismo , Oligoelementos/farmacología , Magnesio/metabolismo , Magnesio/farmacología , Zinc
20.
Front Psychol ; 13: 938762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570996

RESUMEN

Introduction: Taking charge behavior (TCB) of civil servants is an important part of individual innovation performance, which is not only a key step for innovation in the public but also a real need for high-quality cadres construction in the public sector in the new era. Therefore, it is necessary to carry out an in-depth discussion on civil servants' taking charge behavior. Based on the theory of planned behavior, this paper constructs the framework of"cognition-motivation-behavior" to deeply explore the relationship between public sector leaders' information-sharing behavior and subordinates' taking charge behavior, as well as the mediating and moderating effects of subordinates' public service motivation and emotional trust. Method: This study collected 200 civil servants' questionnaires by online survey, and conducted regression analysis through SPSS/AMOS/PROCESS. Result and discussion: The empirical study finds that the information-sharing behavior of leaders in the public sector can significantly affect the TCB of subordinates; the public service motivation partially mediates the relationship between them; emotional trust positively moderates the mediation effect of public service motivation in the relationship between leaders' information-sharing behavior and subordinates' TCB in the public. This study not only enriches the research on civil servants' TCB theoretically but also provides meaningful enlightenment for promoting civil servants' taking charge behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA