Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38014092

RESUMEN

The dorsal funiculus in the spinal cord relays somatosensory information to the brain. It is made of T-shaped bifurcation of dorsal root ganglion (DRG) sensory axons. Our previous study has shown that Slit signaling is required for proper guidance during bifurcation, but loss of Slit does not affect all DRG axons. Here, we examined the role of the extracellular molecule Netrin-1 (Ntn1). Using wholemount staining with tissue clearing, we showed that mice lacking Ntn1 have axons escaping from the dorsal funiculus at the time of bifurcation. Genetic labeling confirmed that these misprojecting axons come from DRG neurons. Single axon analysis showed that the defect does not affect bifurcation but rather alters turning angles. To distinguish their guidance functions, we examined mice with triple deletion of Ntn1, Slit2, and Slit2 and found a completely disorganized dorsal funiculus. Comparing mice with different genotypes using immunolabeling and single axon tracing revealed additive guidance defects, demonstrating the independent roles of Ntn1 and Slit. Moreover, the same defects were observed in embryos lacking their cognate receptors. These in vivo studies thus demonstrate the presence of multi-factorial guidance mechanisms that ensure proper formation of a common branched axonal structure during spinal cord development.

2.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747789

RESUMEN

E3 ligases regulate key processes, but many of their roles remain unknown. Using Perturb-seq, we interrogated the function of 1,130 E3 ligases, partners and substrates in the inflammatory response in primary dendritic cells (DCs). Dozens impacted the balance of DC1, DC2, migratory DC and macrophage states and a gradient of DC maturation. Family members grouped into co-functional modules that were enriched for physical interactions and impacted specific programs through substrate transcription factors. E3s and their adaptors co-regulated the same processes, but partnered with different substrate recognition adaptors to impact distinct aspects of the DC life cycle. Genetic interactions were more prevalent within than between modules, and a deep learning model, comßVAE, predicts the outcome of new combinations by leveraging modularity. The E3 regulatory network was associated with heritable variation and aberrant gene expression in immune cells in human inflammatory diseases. Our study provides a general approach to dissect gene function.

3.
Nature ; 606(7915): 739-746, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650438

RESUMEN

The sympathetic and parasympathetic nervous systems regulate the activities of internal organs1, but the molecular and functional diversity of their constituent neurons and circuits remains largely unknown. Here we use retrograde neuronal tracing, single-cell RNA sequencing, optogenetics and physiological experiments to dissect the cardiac parasympathetic control circuit in mice. We show that cardiac-innervating neurons in the brainstem nucleus ambiguus (Amb) are comprised of two molecularly, anatomically and functionally distinct subtypes. The first, which we call ambiguus cardiovascular (ACV) neurons (approximately 35 neurons per Amb), define the classical cardiac parasympathetic circuit. They selectively innervate a subset of cardiac parasympathetic ganglion neurons and mediate the baroreceptor reflex, slowing heart rate and atrioventricular node conduction in response to increased blood pressure. The other, ambiguus cardiopulmonary (ACP) neurons (approximately 15 neurons per Amb) innervate cardiac ganglion neurons intermingled with and functionally indistinguishable from those innervated by ACV neurons. ACP neurons also innervate most or all lung parasympathetic ganglion neurons-clonal labelling shows that individual ACP neurons innervate both organs. ACP neurons mediate the dive reflex, the simultaneous bradycardia and bronchoconstriction that follows water immersion. Thus, parasympathetic control of the heart is organized into two parallel circuits, one that selectively controls cardiac function (ACV circuit) and another that coordinates cardiac and pulmonary function (ACP circuit). This new understanding of cardiac control has implications for treating cardiac and pulmonary diseases and for elucidating the control and coordination circuits of other organs.


Asunto(s)
Sistema Cardiovascular , Corazón , Pulmón , Vías Nerviosas , Sistema Nervioso Parasimpático , Animales , Corazón/fisiología , Pulmón/fisiología , Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiología , Ratones , Técnicas de Trazados de Vías Neuroanatómicas , Optogenética , Sistema Nervioso Parasimpático/citología , Sistema Nervioso Parasimpático/fisiología , RNA-Seq , Análisis de la Célula Individual
4.
Dev Cell ; 56(17): 2516-2535.e8, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34469751

RESUMEN

The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.


Asunto(s)
Diferenciación Celular/genética , Cresta Neural/citología , Neuroglía/metabolismo , Células de Schwann/metabolismo , Análisis de Secuencia de ARN , Animales , Secuencia de Bases/genética , Diferenciación Celular/fisiología , Ratones Transgénicos , Neuronas/metabolismo , Análisis de Secuencia de ARN/métodos
5.
Elife ; 82019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31162046

RESUMEN

Epithelial fusion underlies many vital organogenic processes during embryogenesis. Disruptions to these cause a significant number of human birth defects, including ocular coloboma. We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure (OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling. We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely expressed in the chick fissure margin during fusion but is immediately downregulated after fusion. We further provide a combination of protein localisation and phenotypic evidence in chick, humans, mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a strong candidate locus for human coloboma and other multi-system developmental fusion defects, and show that chick OFC is a powerful model for epithelial fusion research.


Asunto(s)
Coloboma/genética , Evolución Molecular , Ojo/crecimiento & desarrollo , Netrina-1/genética , Animales , Apoptosis/genética , Embrión de Pollo , Pollos , Coloboma/patología , Secuencia Conservada/genética , Células Epiteliales/metabolismo , Ojo/patología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Hueso Paladar/crecimiento & desarrollo , Hueso Paladar/patología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
6.
Cell Rep ; 22(7): 1666-1680, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444422

RESUMEN

During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.


Asunto(s)
Netrina-1/metabolismo , Neuronas/metabolismo , Rombencéfalo/citología , Animales , Membrana Basal/metabolismo , Movimiento Celular , Nervios Craneales/metabolismo , Receptor DCC/metabolismo , Ganglión/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Sistema Nervioso Periférico/citología , Puente/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Raíces Nerviosas Espinales/metabolismo
7.
Development ; 144(18): 3349-3360, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28851705

RESUMEN

The vestibular system of the inner ear detects head position using three orthogonally oriented semicircular canals; even slight changes in their shape and orientation can cause debilitating behavioral defects. During development, the canals are sculpted from pouches that protrude from the otic vesicle, the embryonic anlage of the inner ear. In the center of each pouch, a fusion plate forms where cells lose their epithelial morphology and the basement membrane breaks down. Cells in the fusing epithelia intercalate and are removed, creating a canal. In mice, fusion depends on the secreted protein netrin 1 (Ntn1), which is necessary for basement membrane breakdown, although the underlying molecular mechanism is unknown. Using gain-of-function approaches, we found that overexpression of Ntn1 in the chick otic vesicle prevented canal fusion by inhibiting apoptosis. In contrast, ectopic expression of the same chicken Ntn1 in the mouse otic vesicle, where apoptosis is less prominent, resulted in canal truncation. These findings highlight the importance of apoptosis for tissue morphogenesis and suggest that Ntn1 may play divergent cellular roles despite its conserved expression during canal morphogenesis in chicken and mouse.


Asunto(s)
Morfogénesis , Factores de Crecimiento Nervioso/metabolismo , Canales Semicirculares/embriología , Canales Semicirculares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Alelos , Animales , Apoptosis , Membrana Basal/metabolismo , Pollos , Electroporación , Proteínas Fluorescentes Verdes/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Netrina-1 , Proteínas Proto-Oncogénicas c-myc/metabolismo , Reproducibilidad de los Resultados
8.
Neural Dev ; 11(1): 19, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27784329

RESUMEN

BACKGROUND: Newborn neurons often migrate before undergoing final differentiation, extending neurites, and forming synaptic connections. Therefore, neuronal migration is crucial for establishing neural circuitry during development. In the developing spinal cord, neuroprogenitors first undergo radial migration within the ventricular zone. Differentiated neurons continue to migrate tangentially before reaching the final positions. The molecular pathways that regulate these migration processes remain largely unknown. Our previous study suggests that the DCC receptor is important for the migration of the dorsal spinal cord progenitors and interneurons. In this study, we determined the involvement of the Netrin1 ligand and the ROBO3 coreceptor in the migration. RESULTS: By pulse labeling neuroprogenitors with electroporation, we examined their radial migration in Netrin1 (Ntn1), Dcc, and Robo3 knockout mice. We found that all three mutants exhibit delayed migration. Furthermore, using immunohistochemistry of the BARHL2 interneuron marker, we found that the mediolateral and dorsoventral migration of differentiated dorsal interneurons is also delayed. Together, our results suggest that Netrin1/DCC signaling induce neuronal migration in the dorsal spinal cord. CONCLUSIONS: Netrin1, DCC, and ROBO3 have been extensively studied for their functions in regulating axon guidance in the spinal commissural interneurons. We reveal that during earlier development of dorsal interneurons including commissural neurons, these molecules play an important role in promoting cell migration.


Asunto(s)
Movimiento Celular , Interneuronas/fisiología , Factores de Crecimiento Nervioso/fisiología , Receptores de Superficie Celular/fisiología , Médula Espinal/crecimiento & desarrollo , Proteínas Supresoras de Tumor/fisiología , Animales , Receptor DCC , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Netrina-1 , Células-Madre Neurales/fisiología , Receptores de Superficie Celular/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
9.
Development ; 142(21): 3686-91, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26395479

RESUMEN

Netrin 1 (Ntn1) is a multifunctional guidance cue expressed in the ventricular zone and floor plate of the embryonic neural tube. Although Ntn1 is best known for acting as an axon guidance cue through Dcc and neogenin receptors, it is also thought to regulate neuronal survival and blood vessel development through Unc5 family receptors. However, the Ntn1 gene trap mutant mouse does not display all the phenotypes predicted from in vitro assays or analyses of mice lacking predicted receptors. Since the gene trap strain still produces wild-type Ntn1 protein, it is unclear whether the absence of phenotypes reflects the activity of alternative cues or of residual Ntn1. To resolve the full contribution of Ntn1 to development, we generated a null allele of Ntn1 and re-examined tissues exhibiting phenotypic discrepancies between receptor mutants and Ntn1 hypomorphs. We found that in Ntn1 null animals commissural axons rarely cross the midline, resulting in a strongly enhanced phenotype relative to Ntn1 hypomorphs, which retain many axons with normal trajectories. Thus, low levels of Ntn1 can account for persistent attraction to the midline in hypomorphs. By contrast, Ntn1 null mice do not show all of the phenotypes reported for Unc5 receptor mutants, indicating that Ntn1 is not necessarily the dominant ligand for Unc5 family members in vivo and ruling out primary roles in survival or angiogenesis.


Asunto(s)
Embrión de Mamíferos/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Axones/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Mutación , Receptores de Netrina , Netrina-1 , Tubo Neural/embriología , Receptores de Superficie Celular/metabolismo , Nervio Troclear/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA