Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
mSphere ; 4(6)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31826973

RESUMEN

AFP is an antimicrobial peptide (AMP) produced by the filamentous fungus Aspergillus giganteus and is a very potent inhibitor of fungal growth that does not affect the viability of bacteria, plant, or mammalian cells. It targets chitin synthesis and causes plasma membrane permeabilization in many human- and plant-pathogenic fungi, but its exact mode of action is not known. After adoption of the "damage-response framework of microbial pathogenesis" regarding the analysis of interactions between AMPs and microorganisms, we have recently proposed that the cytotoxic capacity of a given AMP depends not only on the presence/absence of its target(s) in the host and the AMP concentration applied but also on other variables, such as microbial survival strategies. We show here using the examples of three filamentous fungi (Aspergillus niger, Aspergillus fumigatus, and Fusarium graminearum) and two yeasts (Saccharomyces cerevisiae and Pichia pastoris) that the important parameters defining the AFP susceptibilities of these fungi are (i) the presence/absence of glycosylceramides, (ii) the presence/absence of Δ3(E) desaturation of the fatty acid chain therein, and (iii) the (dis)ability of these fungi to respond to AFP inhibitory effects with the fortification of their cell walls via increased chitin and ß-(1,3)-glucan synthesis. These observations support the idea of the adoption of the damage-response framework to holistically understand the outcome of AFP inhibitory effects.IMPORTANCE Our data suggest a fundamental role of glycosylceramides in the susceptibility of fungi to AFP. We discovered that only a minor structural difference in these molecules-namely, the saturation level of their fatty acid chain, controlled by a 2-hydroxy fatty N-acyl-Δ3(E)-desaturase-represents a key to understanding the inhibitory activity of AFP. As glycosylceramides are important components of fungal plasma membranes, we propose a model which links AFP-mediated inhibition of chitin synthesis in fungi with its potential to disturb plasma membrane integrity.


Asunto(s)
Antifúngicos/farmacología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Ceramidas/análisis , Proteínas Fúngicas/farmacología , Hongos/química , Hongos/efectos de los fármacos , Quitina/análisis , Hongos/crecimiento & desarrollo , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana
3.
Nat Commun ; 4: 1941, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23770768

RESUMEN

The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.


Asunto(s)
Genoma/genética , Porphyridium/genética , Proteínas Algáceas/genética , Metabolismo de los Hidratos de Carbono/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ontología de Genes , Transferencia de Gen Horizontal , Glucolípidos/biosíntesis , Complejos de Proteína Captadores de Luz/metabolismo , Meiosis/genética , Proteínas de Transporte de Membrana/metabolismo , Peso Molecular , Filogenia , Porphyridium/citología , Porphyridium/enzimología , Reproducción/genética , Esfingolípidos/metabolismo , Almidón/biosíntesis
4.
PLoS Genet ; 8(11): e1003064, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166516

RESUMEN

Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.


Asunto(s)
Genoma , Anotación de Secuencia Molecular , Estramenopilos/genética , Secuencia de Bases , Genómica , Nitrógeno/administración & dosificación , Nitrógeno/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN/métodos , Especificidad de la Especie , Estramenopilos/crecimiento & desarrollo , Transformación Genética
5.
Eukaryot Cell ; 11(7): 856-63, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22562471

RESUMEN

Monogalactosyldiacylglycerol (MGDG) in Chlamydomonas reinhardtii and other green algae contains hexadeca-4,7,10,13-tetraenoic acid (16:4) in the glycerol sn-2 position. While many genes necessary for the introduction of acyl chain double bonds have been functionally characterized, the Δ4-desaturase remained unknown. Using a phylogenetic comparison, a candidate gene encoding the MGDG-specific Δ4-desaturase from Chlamydomonas (CrΔ4FAD) was identified. CrΔ4FAD shows all characteristic features of a membrane-bound desaturase, including three histidine boxes and a transit peptide for chloroplast targeting. But it also has an N-terminal cytochrome b(5) domain, distinguishing it from other known plastid desaturases. Cytochrome b(5) is the primary electron donor for endoplasmic reticulum (ER) desaturases and is often fused to the desaturase domain in desaturases modifying the carboxyl end of the acyl group. Difference absorbance spectra of the recombinant cytochrome b(5) domain of CrΔ4FAD showed that it is functional in vitro. Green fluorescent protein fusions of CrΔ4FAD localized to the plastid envelope in Chlamydomonas. Interestingly, overproduction of CrΔ4FAD in Chlamydomonas not only increased levels of 16:4 acyl groups in cell extracts but specifically increased the total amount of MGDG. Vice versa, the amount of MGDG was lowered in lines with reduced levels of CrΔ4FAD. These data suggest a link between MGDG molecular species composition and galactolipid abundance in the alga, as well as a specific function for this fatty acid in MGDG.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Citocromos b5/metabolismo , Ácido Graso Desaturasas/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/enzimología , Cloroplastos/genética , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/genética , Galactolípidos/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plastidios/química , Plastidios/genética , Plastidios/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
6.
Plant Physiol ; 158(4): 2001-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22337920

RESUMEN

Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.


Asunto(s)
Eucariontes/genética , Transferencia de Gen Horizontal/genética , Proteínas de Transporte de Membrana/genética , Fotosíntesis/genética , Porphyra/genética , Sodio/metabolismo , Acuaporinas/metabolismo , Transporte Biológico/genética , Señalización del Calcio/genética , Evolución Molecular , Etiquetas de Secuencia Expresada , Agua Dulce , Genes , Transporte Iónico/genética , Metabolismo de los Lípidos/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Nitratos/metabolismo , Filogenia , Compuestos de Amonio Cuaternario/metabolismo , Agua de Mar , Transcriptoma/genética
7.
J Phycol ; 48(6): 1328-42, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27009986

RESUMEN

The red seaweed Porphyra (Bangiophyceae) and related Bangiales have global economic importance. Here, we report the analysis of a comprehensive transcriptome comprising ca. 4.7 million expressed sequence tag (EST) reads from P. umbilicalis (L.) J. Agardh and P. purpurea (Roth) C. Agardh (ca. 980 Mbp of data generated using 454 FLX pyrosequencing). These ESTs were isolated from the haploid gametophyte (blades from both species) and diploid conchocelis stage (from P. purpurea). In a bioinformatic analysis, only 20% of the contigs were found to encode proteins of known biological function. Comparative analysis of predicted protein functions in mesophilic (including Porphyra) and extremophilic red algae suggest that the former has more putative functions related to signaling, membrane transport processes, and establishment of protein complexes. These enhanced functions may reflect general mesophilic adaptations. A near-complete repertoire of genes encoding histones and ribosomal proteins was identified, with some differentially regulated between the blade and conchocelis stage in P. purpurea. This finding may reflect specific regulatory processes associated with these distinct phases of the life history. Fatty acid desaturation patterns, in combination with gene expression profiles, demonstrate differences from seed plants with respect to the transport of fatty acid/lipid among subcellular compartments and the molecular machinery of lipid assembly. We also recovered a near-complete gene repertoire for enzymes involved in the formation of sterols and carotenoids, including candidate genes for the biosynthesis of lutein. Our findings provide key insights into the evolution, development, and biology of Porphyra, an important lineage of red algae.

8.
Plant Physiol ; 154(4): 1737-52, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20935180

RESUMEN

Like many microalgae, Chlamydomonas reinhardtii forms lipid droplets rich in triacylglycerols when nutrient deprived. To begin studying the mechanisms underlying this process, nitrogen (N) deprivation was used to induce triacylglycerol accumulation and changes in developmental programs such as gametogenesis. Comparative global analysis of transcripts under induced and noninduced conditions was applied as a first approach to studying molecular changes that promote or accompany triacylglycerol accumulation in cells encountering a new nutrient environment. Towards this goal, high-throughput sequencing technology was employed to generate large numbers of expressed sequence tags of eight biologically independent libraries, four for each condition, N replete and N deprived, allowing a statistically sound comparison of expression levels under the two tested conditions. As expected, N deprivation activated a subset of control genes involved in gametogenesis while down-regulating protein biosynthesis. Genes for components of photosynthesis were also down-regulated, with the exception of the PSBS gene. N deprivation led to a marked redirection of metabolism: the primary carbon source, acetate, was no longer converted to cell building blocks by the glyoxylate cycle and gluconeogenesis but funneled directly into fatty acid biosynthesis. Additional fatty acids may be produced by membrane remodeling, a process that is suggested by the changes observed in transcript abundance of putative lipase genes. Inferences on metabolism based on transcriptional analysis are indirect, but biochemical experiments supported some of these deductions. The data provided here represent a rich source for the exploration of the mechanism of oil accumulation in microalgae.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Nitrógeno/metabolismo , ARN Mensajero/genética , Secuencia de Bases , Northern Blotting , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiología , Cartilla de ADN , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Metabolismo de los Lípidos , Fotosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Adv Exp Med Biol ; 688: 249-63, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20919660

RESUMEN

Our knowledge of plant sphingolipid metabolism and function has significantly increased over the past years. This applies mainly to the identification and the functional characterization of genes and enzymes involved in sphingolipid biosynthesis. In addition a number of plant mutants have provided new insights into sphingolipid functions. Very little is still known about intracellular transport, spatial distribution, degradation and signaling functions of sphingolipids. However, combination of Arabidopsis genetics with lipidomics and cell biology will soon bring our understanding of these issues to a new level.


Asunto(s)
Plantas/metabolismo , Esfingolípidos/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Modelos Biológicos , Estructura Molecular , Plantas/genética , Transducción de Señal/fisiología , Esfingolípidos/química
10.
Plant Physiol ; 149(1): 487-98, 2009 01.
Artículo en Inglés | MEDLINE | ID: mdl-18978071

RESUMEN

The role of Delta4-unsaturated sphingolipid long-chain bases such as sphingosine was investigated in Arabidopsis (Arabidopsis thaliana). Identification and functional characterization of the sole Arabidopsis ortholog of the sphingolipid Delta4-desaturase was achieved by heterologous expression in Pichia pastoris. A P. pastoris mutant disrupted in the endogenous sphingolipid Delta4-desaturase gene was unable to synthesize glucosylceramides. Synthesis of glucosylceramides was restored by the expression of Arabidopsis gene At4g04930, and these sphingolipids were shown to contain Delta4-unsaturated long-chain bases, confirming that this open reading frame encodes the sphingolipid Delta4-desaturase. At4g04930 has a very restricted expression pattern, transcripts only being detected in pollen and floral tissues. Arabidopsis insertion mutants disrupted in the sphingolipid Delta4-desaturase At4g04930 were isolated and found to be phenotypically normal. Sphingolipidomic profiling of a T-DNA insertion mutant indicated the absence of Delta4-unsaturated sphingolipids in floral tissue, also resulting in the reduced accumulation of glucosylceramides. No difference in the response to drought or water loss was observed between wild-type plants and insertion mutants disrupted in the sphingolipid Delta4-desaturase At4g04930, nor was any difference observed in stomatal closure after treatment with abscisic acid. No differences in pollen viability between wild-type plants and insertion mutants were detected. Based on these observations, it seems unlikely that Delta4-unsaturated sphingolipids and their metabolites such as sphingosine-1-phosphate play a significant role in Arabidopsis growth and development. However, Delta4-unsaturated ceramides may play a previously unrecognized role in the channeling of substrates for the synthesis of glucosylceramides.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Lisofosfolípidos/metabolismo , Oxidorreductasas/metabolismo , Esfingosina/análogos & derivados , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Clonación Molecular , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Glucosilceramidas/biosíntesis , Mutagénesis Insercional , Sistemas de Lectura Abierta , Oxidorreductasas/genética , Filogenia , Pichia/genética , Eliminación de Secuencia , Esfingosina/metabolismo
11.
J Biol Chem ; 283(52): 36734-42, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18981185

RESUMEN

Delta3(E)-unsaturated fatty acids are characteristic components of glycosylceramides from some fungi, including also human- and plant-pathogenic species. The function and genetic basis for this unsaturation is unknown. For Fusarium graminearum, which is pathogenic to grasses and cereals, we could show that the level of Delta3-unsaturation of glucosylceramide (GlcCer) was highest at low temperatures and decreased when the fungus was grown above 28 degrees C. With a bioinformatics approach, we identified a new family of polypeptides carrying the histidine box motifs characteristic for membrane-bound desaturases. One of the corresponding genes was functionally characterized as a sphingolipid-Delta3(E)-desaturase. Deletion of the candidate gene in F. graminearum resulted in loss of the Delta3(E)-double bond in the fatty acyl moiety of GlcCer. Heterologous expression of the corresponding cDNA from F. graminearum in the yeast Pichia pastoris led to the formation of Delta3(E)-unsaturated GlcCer.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Fusarium/enzimología , Regulación Enzimológica de la Expresión Génica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Clonación Molecular , Eliminación de Gen , Glucosilceramidas/química , Histidina/química , Modelos Químicos , Datos de Secuencia Molecular , Péptidos/química , Pichia/metabolismo , Homología de Secuencia de Aminoácido , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA