Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Rep ; 13(1): 9333, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291185

RESUMEN

Mortality of Duchenne Muscular Dystrophy (DMD) is a consequence of progressive wasting of skeletal and cardiac muscle, where dystrophinopathy affects not only muscle fibres but also myogenic cells. Elevated activity of P2X7 receptors and increased store-operated calcium entry have been identified in myoblasts from the mdx mouse model of DMD. Moreover, in immortalized mdx myoblasts, increased metabotropic purinergic receptor response was found. Here, to exclude any potential effects of cell immortalization, we investigated the metabotropic response in primary mdx and wild-type myoblasts. Overall, analyses of receptor transcript and protein levels, antagonist sensitivity, and cellular localization in these primary myoblasts confirmed the previous data from immortalised cells. However, we identified significant differences in the pattern of expression and activity of P2Y receptors and the levels of the "calcium signalling toolkit" proteins between mdx and wild-type myoblasts isolated from different muscles. These results not only extend the earlier findings on the phenotypic effects of dystrophinopathy in undifferentiated muscle but, importantly, also reveal that these changes are muscle type-dependent and endure in isolated cells. This muscle-specific cellular impact of DMD may not be limited to the purinergic abnormality in mice and needs to be taken into consideration in human studies.


Asunto(s)
Calcio , Distrofia Muscular de Duchenne , Ratones , Humanos , Animales , Ratones Endogámicos mdx , Calcio/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Señalización del Calcio , Miocardio/metabolismo , Receptores Purinérgicos/metabolismo , Músculo Esquelético/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298386

RESUMEN

Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost. This disturbs important purinergic signaling: An acute muscle injury causes the release of large quantities of ATP, which acts as a damage-associated molecular pattern (DAMP). DAMPs trigger inflammation that clears dead tissues and initiates regeneration that eventually restores normal muscle function. However, in DMD and LGMD, the loss of ecto-ATPase activity, that normally curtails this extracellular ATP (eATP)-evoked stimulation, causes exceedingly high eATP levels. Thus, in dystrophic muscles, the acute inflammation becomes chronic and damaging. The very high eATP over-activates P2X7 purinoceptors, not only maintaining the inflammation but also tuning the potentially compensatory P2X7 up-regulation in dystrophic muscle cells into a cell-damaging mechanism exacerbating the pathology. Thus, the P2X7 receptor in dystrophic muscles is a specific therapeutic target. Accordingly, the P2X7 blockade alleviated dystrophic damage in mouse models of dystrophinopathy and sarcoglycanopathy. Therefore, the existing P2X7 blockers should be considered for the treatment of these highly debilitating diseases. This review aims to present the current understanding of the eATP-P2X7 purinoceptor axis in the pathogenesis and treatment of muscular dystrophies.


Asunto(s)
Distrofia Muscular de Duchenne , Sarcoglicanopatías , Ratones , Animales , Receptores Purinérgicos P2X7/genética , Sarcoglicanopatías/patología , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Adenosina Trifosfato , Inflamación/patología , Músculo Esquelético/patología
3.
Cells ; 12(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36611971

RESUMEN

INTRODUCTION: One of the key factors that may influence the therapeutic potential of mesenchymal stem/stromal cells (MSCs) is their metabolism. The switch between mitochondrial respiration and glycolysis can be affected by many factors, including the oxygen concentration and the spatial form of culture. This study compared the metabolic features of adipose-derived mesenchymal stem/stromal cells (ASCs) and dedifferentiated fat cells (DFATs) cultivated as monolayer or spheroid culture under 5% O2 concentration (physiological normoxia) and their impact on MSCs therapeutic abilities. RESULTS: We observed that the cells cultured as spheroids had a slightly lower viability and a reduced proliferation rate but a higher expression of the stemness-related transcriptional factors compared to the cells cultured in monolayer. The three-dimensional culture form increased mtDNA content, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), especially in DFATs-3D population. The DFATs spheroids also demonstrated increased levels of Complex V proteins and higher rates of ATP production. Moreover, increased reactive oxygen species and lower intracellular lactic acid levels were also found in 3D culture. CONCLUSION: Our results may suggest that metabolic reconfiguration accompanies the transition from 2D to 3D culture and the processes of both mitochondrial respiration and glycolysis become more active. Intensified metabolism might be associated with the increased demand for energy, which is needed to maintain the expression of pluripotency genes and stemness state.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , Humanos , Técnicas de Cultivo de Célula/métodos , Tejido Adiposo/metabolismo , Células Cultivadas , Esferoides Celulares , Células Madre Mesenquimatosas/metabolismo
4.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203423

RESUMEN

An increased concentration of palmitate in circulation is one of the most harmful factors in obesity. The von Willebrand factor (vWF), a protein involved in haemostasis, is produced and secreted by the vascular endothelium. An increased level of vWF in obese patients is associated with thrombosis and cardiovascular disease. The aim of this study was to investigate a palmitate effect on vWF in endothelial cells and understand the mechanisms of palmitate-activated signalling. Human umbilical vein endothelial cells (HUVECs) incubated in the presence of palmitate, exhibited an increased VWF gene expression, vWF protein maturation, and stimulated vWF secretion. Cardamonin, a Nuclear Factor kappa B (NF-κB) inhibitor, abolished the palmitate effect on VWF expression. The inhibition of Toll-like receptor (TLR) 2 with C29 resulted in the TLR4 overactivation in palmitate-treated cells. Palmitate, in the presence of TLR4 inhibitor TAK-242, leads to a higher expression of TLR6, CD36, and TIRAP. The silencing of TLR4 resulted in an increase in TLR2 level and vice versa. The obtained results indicate a potential mechanism of obesity-induced thrombotic complication caused by fatty acid activation of NF-κB signalling and vWF upregulation and help to identify various compensatory mechanisms related to TLR4 signal transduction.


Asunto(s)
FN-kappa B , Factor de von Willebrand , Humanos , Factor de von Willebrand/genética , Células Endoteliales de la Vena Umbilical Humana , Receptor Toll-Like 4/genética , Receptores Toll-Like , Proteínas I-kappa B , Obesidad
5.
Int J Biochem Cell Biol ; 151: 106292, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038127

RESUMEN

This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content. This may affect NAD+ synthesis and various processes of methylation, including epigenetic modifications of chromatin. Particularly high activity of nicotinamide N-methyltransferase is detected in liver, many neoplasms as well as in various cells in stressful conditions. The elevated nicotinamide N-methyltransferase content was also found in endothelial cells treated with statins. Although the exogenous methylnicotinamide has been postulated to induce a vasodilatory response, the specific metabolic role of nicotinamide N-methyltransferase in vascular endothelium is still unclear. Treatment of endothelial cells with bacterial lipopolysaccharide evokes several metabolic and functional consequences which built a multifaceted physiological response of endothelium to bacterial infection. Among the spectrum of biochemical changes substantially elevated protein level of nicotinamide N-methyltransferase was particularly intriguing. Here it has been shown that silencing of the nicotinamide N-methyltransferase gene influences several changes which are observed in cells treated with lipopolysaccharide. They include altered energy metabolism and rearrangement of the mitochondrial network. A complete explanation of the mechanisms behind the protective consequences of the nicotinamide N-methyltransferase deficiency in cells treated with lipopolysaccharide needs further investigation.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Nicotinamida N-Metiltransferasa , Cromatina/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Metabolismo Energético , Humanos , Lipopolisacáridos/farmacología , NAD/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacología , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , S-Adenosilmetionina/metabolismo
6.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681707

RESUMEN

Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the DMD gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca2+ in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is not completely understood. While abnormally elevated resting cytosolic Ca2+ concentration is found in all dystrophic cells, the aberrant mechanisms leading to that outcome have cell-specific components. We probe the diverse aspects of calcium response in various affected tissues. In skeletal muscles, cardiomyocytes, and neurons, dystrophin appears to serve as a scaffold for proteins engaged in calcium homeostasis, while its interactions with actin cytoskeleton influence endoplasmic reticulum organisation and motility. However, in myoblasts, lymphocytes, endotheliocytes, and mesenchymal and myogenic cells, calcium abnormalities cannot be clearly attributed to the loss of interaction between dystrophin and the calcium toolbox proteins. Nevertheless, DMD gene mutations in these cells lead to significant defects and the calcium anomalies are a symptom of the early developmental phase of this pathology. As the impaired calcium homeostasis appears to underpin multiple DMD abnormalities, understanding this alteration may lead to the development of new therapies. In fact, it appears possible to mitigate the impact of the abnormal calcium homeostasis and the dystrophic phenotype in the total absence of dystrophin. This opens new treatment avenues for this incurable disease.


Asunto(s)
Calcio/metabolismo , Distrofia Muscular de Duchenne/patología , Señalización del Calcio , Distrofina/química , Distrofina/genética , Distrofina/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
7.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445210

RESUMEN

Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCßII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCßII specific inhibitor peptide ßIIV5-3-treated IR. Vehicle or ßIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCßII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 µM) to evaluate the inhibition of GLS1 on neuronal viability. PKCßII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by ßIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCßII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.


Asunto(s)
Trastornos Cerebrovasculares/enzimología , Glutaminasa/metabolismo , Hipocampo/enzimología , Mitocondrias/enzimología , Proteína Quinasa C beta/metabolismo , Daño por Reperfusión/enzimología , Animales , Trastornos Cerebrovasculares/patología , Gerbillinae , Hipocampo/patología , Mitocondrias/patología , Ratas , Ratas Wistar , Daño por Reperfusión/patología
8.
J Appl Toxicol ; 41(7): 1076-1088, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33073877

RESUMEN

Statins belong to the most often prescribed medications, which efficiently normalise hyperlipidaemia and prevent cardiovascular complications in obese and diabetic patients. However, beside expected therapeutic results based on the inhibition of 3-hydroxyl-3-methylglutaryl-CoA reductase, these drugs exert multiple side effects of poorly understood characteristic. In this study, side effects of pravastatin and atorvastatin on EA.hy926 endothelial cell line were investigated. It was found that both statins activate proinflammatory response, elevate nitric oxide and reactive oxygen species (ROS) generation and stimulate antioxidative response in these cells. Moreover, only slight stimulation of the mitochondrial biogenesis and significant changes in the mitochondrial network organisation have been noted. Although biochemical bases behind these effects are not clear, they may partially be explained as an elevation of AMP-activated protein kinase (AMPK) activity and an increased activating phosphorylation of sirtuin 1 (Sirt1), which were observed in statins-treated cells. In addition, both statins increased nicotinamide N-methyltransferase (NNMT) protein level that may explain a reduced fraction of methylated histone H3. Interestingly, a substantial reduction of the total level of histone H3 in cells treated with pravastatin but not atorvastatin was also observed. These results indicate a potential additional biochemical target for statins related to reduced histone H3 methylation due to increased NNMT protein level. Thus, NNMT may directly modify gene activity.


Asunto(s)
Anticolesterolemiantes/toxicidad , Atorvastatina/toxicidad , Nicotinamida N-Metiltransferasa/metabolismo , Óxido Nítrico/metabolismo , Pravastatina/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Línea Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Histonas/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Mitocondrias/metabolismo , Pirroles
9.
Mol Neurobiol ; 58(4): 1621-1633, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33222147

RESUMEN

The gerbil is a well-known model for studying cerebral ischemia. The CA1 of the hippocampus is vulnerable to 5 min of ischemia, while the CA2-4 and dentate gyrus (DG) are resistant to it. Short-lasting ischemia, a model of transient ischemic attacks in men, results in CA1 neuron death within 2-4 days of reperfusion. Untargeted metabolomics, using LC-QTOF-MS, was used to enrich the knowledge about intrinsic vulnerability and resistance of hippocampal regions and their early post-ischemic response (IR). In total, 30 significant metabolites were detected. In controls, taurine was significantly lower and guanosine monophosphate was higher in CA1, as compared to that in CA2-4,DG. LysoPG and LysoPE were more abundant in CA1, while LysoPI 18:0 was detected only in CA2-4,DG. After IR, a substantial decrease in the citric acid level in CA1, an accumulation of pipecolic acid in both regions, and opposite changes in the amount of PE and LysoPE were observed. The following metabolic pathways were identified as being differentially active in control CA1 vs. CA2-4,DG: metabolism of taurine and hypotaurine, glycerophospholipid, and purine. These results may indicate that a regulation of cell volume, altered structure of cell membranes, and energy metabolism differentiate hippocampal regions. Early post-ischemia, spatial differences in the metabolism of aminoacyl-tRNA biosynthesis, and amino acids and their metabolites with a predominance of those which upkeep their well-being in CA2-4,DG are shown. Presented results are consistent with genetic, morphological, and functional data, which may be useful in further study on endogenous mechanisms of neuroprotection and search for new targets for therapeutic interventions.


Asunto(s)
Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Metabolómica , Daño por Reperfusión/metabolismo , Animales , Análisis Discriminante , Gerbillinae , Análisis de los Mínimos Cuadrados , Masculino , Redes y Vías Metabólicas , Metaboloma , Especificidad de Órganos
10.
Am J Pathol ; 190(1): 190-205, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31726040

RESUMEN

Duchenne muscular dystrophy (DMD) causes severe disability and death of young men because of progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of a spectrum of dystrophin isoforms expressed from the largest human gene. Although there is evidence for the loss of shorter isoforms having impact in the central nervous system, their role in muscle is unclear. We found that at 8 weeks, the active phase of pathology in dystrophic mice, dystrophin-null mice (mdxßgeo) presented with a mildly exacerbated phenotype but without an earlier onset, increased serum creatine kinase levels, or decreased muscle strength. However, at 12 months, mdxßgeo diaphragm strength was lower, whereas fibrosis increased, compared with mdx. The most striking features of the dystrophin-null phenotype were increased ectopic myofiber calcification and altered macrophage infiltration patterns, particularly the close association of macrophages with calcified fibers. Ectopic calcification had the same temporal pattern of presentation and resolution in mdxßgeo and mdx muscles, despite significant intensity differences across muscle groups. Comparison of the rare dystrophin-null patients against those with mutations affecting full-length dystrophins may provide mechanistic insights for developing more effective treatments for DMD.


Asunto(s)
Calcinosis/patología , Distrofina/metabolismo , Fibrosis/patología , Macrófagos/inmunología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Calcificación Vascular/patología , Animales , Calcinosis/inmunología , Calcinosis/metabolismo , Distrofina/genética , Fibrosis/inmunología , Fibrosis/metabolismo , Inflamación , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/inmunología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/metabolismo , Calcificación Vascular/inmunología , Calcificación Vascular/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1138-1151, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30684640

RESUMEN

Pathophysiology of Duchenne Muscular Dystrophy (DMD) is still elusive. Although progressive wasting of muscle fibres is a cause of muscle deterioration, there is a growing body of evidence that the triggering effects of DMD mutation are present at the earlier stage of muscle development and affect myogenic cells. Among these abnormalities, elevated activity of P2X7 receptors and increased store-operated calcium entry myoblasts have been identified in mdx mouse. Here, the metabotropic extracellular ATP/UTP-evoked response has been investigated. Sensitivity to antagonist, effect of gene silencing and cellular localization studies linked these elevated purinergic responses to the increased expression of P2Y2 but not P2Y4 receptors. These alterations have physiological implications as shown by reduced motility of mdx myoblasts upon treatment with P2Y2 agonist. However, the ultimate increase in intracellular calcium in dystrophic cells reflected complex alterations of calcium homeostasis identified in the RNA seq data and with significant modulation confirmed at the protein level, including a decrease of Gq11 subunit α, plasma membrane calcium ATP-ase, inositol-2,4,5-trisphosphate-receptor proteins and elevation of phospholipase Cß, sarco-endoplamatic reticulum calcium ATP-ase and sodium­calcium exchanger. In conclusion, whereas specificity of dystrophic myoblast excitation by extracellular nucleotides is determined by particular receptor overexpression, the intensity of such altered response depends on relative activities of downstream calcium regulators that are also affected by Dmd mutations. Furthermore, these phenotypic effects of DMD emerge as early as in undifferentiated muscle. Therefore, the pathogenesis of DMD and the relevance of current therapeutic approaches may need re-evaluation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio/genética , Perfilación de la Expresión Génica/métodos , Mioblastos/metabolismo , Receptores Purinérgicos P2Y2/genética , Uridina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Distrofina/genética , Distrofina/metabolismo , Ontología de Genes , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mutación , Mioblastos/citología , Mioblastos/efectos de los fármacos , Receptores Purinérgicos P2Y2/metabolismo , Uridina Trifosfato/farmacología
12.
Int J Biochem Cell Biol ; 106: 57-67, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471424

RESUMEN

Previously we showed that a mild stimulation of EA.hy926 cells with tumour necrosis factor alpha (TNFα) activated mitochondrial biogenesis, probably as a mechanism preventing cell death. This was accompanied by an increased phosphorylation of eNOS and elevation of NO release. The aim of the present study was to explain the biochemical basis of this effect. Our results indicate that eNOS is the only enzyme catalysing NO generation in EA.hy926 cells, and TNFα stimulates its activity by activating AMP-activated protein kinase (AMPK). Inhibition of AMPK with Compound C prevents the TNFα-induced activatory phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and reduces the NO release. AMPK is activated by phosphorylation catalysed by liver kinase B1 (LKB1) and calcium/calmodulin-dependent protein kinase kinase beta (CaMKKß), which are phosphorylated and thereby activated in the presence of TNFα. Moreover, CaMKKß catalyses an activatory phosphorylation of sirtuin 1, which could deacetylate and activate eNOS both directly and indirectly by an elevating the LKB1 activity. TNFα hardly increases the nuclear fraction of sirtuin 1, thus its major activity is probably attributed to the cytosolic pool. This is in line with the elevated activity of eNOS. We conclude that the increased AMPK-dependent phosphorylation of eNOS at least partially explains the stimulation of NO generation by TNFα in EA.hy926 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/biosíntesis , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Activación Enzimática/efectos de los fármacos , Humanos
13.
Acta Neuropathol Commun ; 6(1): 27, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29642926

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor resulted in a significant attenuation of muscle and non-muscle symptoms in DMDmdx mouse model. As P2RX7 is an attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast, Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7 functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of disease in DMDmdx mice attenuated the phenotype without any detectable side effects. Recovery was evident in the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease. This approach is not constrained by causative DMD mutations and may be effective in alleviating both muscle and non-muscle abnormalities.


Asunto(s)
Antimetabolitos/uso terapéutico , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Receptores Purinérgicos P2X7/metabolismo , Zidovudina/uso terapéutico , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Calcio/metabolismo , Células Cultivadas , Colágeno Tipo IV/metabolismo , Creatina Quinasa/sangre , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Modelos Moleculares , Fuerza Muscular/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/metabolismo , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/genética , Mioblastos/efectos de los fármacos
14.
J Mol Cell Biol ; 10(3): 229-242, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992079

RESUMEN

P2X7 purinoceptor promotes survival or cytotoxicity depending on extracellular adenosine triphosphate (ATP) stimulus intensity controlling its ion channel or P2X7-dependent large pore (LP) functions. Mechanisms governing this operational divergence and functional idiosyncrasy are ill-understood. We have discovered a feedback loop where sustained activation of P2X7 triggers release of active matrix metalloproteinase 2 (MMP-2), which halts ion channel and LP responses via the MMP-2-dependent receptor cleavage. This mechanism operates in cells as diverse as macrophages, dystrophic myoblasts, P2X7-transfected HEK293, and human tumour cells. Given that serum-born MMP-2 activity also blocked receptor functions, P2X7 responses in vivo may decrease in organs with permeable capillaries. Therefore, this mechanism represents an important fine-tuning of P2X7 functions, reliant on both cell-autonomous and extraneous factors. Indeed, it allowed evasion from the ATP-induced cytotoxicity in macrophages and human cancer cells with high P2X7 expression levels. Finally, we demonstrate that P2X7 ablation eliminated gelatinase activity in inflamed dystrophic muscles in vivo. Thus, P2X7 antagonists could be used as an alternative to highly toxic MMP inhibitors in treatments of inflammatory diseases and cancers.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Distroglicanos/metabolismo , Células HEK293 , Humanos , Receptores de Hialuranos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Neoplasias/metabolismo , Proteolisis , Células RAW 264.7
15.
Arch Biochem Biophys ; 634: 88-95, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29037962

RESUMEN

A dyslipidaemia-related increase of the concentration of long-chain fatty acids in the plasma is an important pathological factor substantially increasing risk of serious consequences in vascular endothelium. Inflammatory response, atherosclerosis and insulin resistance seem the most severe. Palmitate at excessive concentrations has been shown to have a harmful effect on endothelial cells impairing NO generation, stimulating reactive oxygen species (ROS) formation and affecting their viability. On the other hand we found that palmitate applied for 48 h at 100 µM concentration which is sufficient to induce inflammatory response, increase ROS generation and reduce insulin sensitivity of EA.hy926 cells, unexpectedly also stimulates NO synthesis and increases mitochondrial mass, suggesting a pro-survival rather than anti-survival effect. This finding unveils a potential protective mechanism allowing cells to maintain their energy homeostasis under conditions of a moderate deregulation of lipid metabolism.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Células Endoteliales/fisiología , Mitocondrias/fisiología , Palmitatos/administración & dosificación , Especies Reactivas de Oxígeno/inmunología , Línea Celular , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Óxido Nítrico/metabolismo
16.
Arch Biochem Biophys ; 593: 50-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26869201

RESUMEN

Mutations in the NPC1 or NPC2 genes lead to Niemann-Pick type C (NPC) disease, a rare lysosomal storage disorder characterized by progressive neurodegeneration. These mutations result in cholesterol and glycosphingolipid accumulation in the late endosomal/lysosomal compartment. Complications in the storage of cholesterol in NPC1 mutant cells are associated with other anomalies, such as altered distribution of intracellular organelles and properties of the plasma membrane. The pathomechanism of NPC disease is largely unknown. Interestingly, other storage diseases such as Gaucher and Farber diseases are accompanied by severe mitochondrial dysfunction. This prompted us to investigate the effect of absence or dysfunction of the NPC1 protein on mitochondrial properties to confirm or deny a putative relationship between NPC1 mutations and mitochondrial function. This study was performed on primary skin fibroblasts derived from skin biopsies of two NPC patients, carrying mutations in the NPC1 gene. We observed altered organization of mitochondria in NPC1 mutant cells, significant enrichment in mitochondrial cholesterol content, increased respiration, altered composition of the respiratory chain complex, and substantial reduction in cellular ATP level. Thus, a primary lysosomal defect in NPC1 mutant fibroblasts is accompanied by deregulation of the organization and function of the mitochondrial network.


Asunto(s)
Fibroblastos/metabolismo , Mitocondrias/fisiología , Enfermedades de Niemann-Pick/patología , Adenosina Trifosfato/biosíntesis , Adulto , Proteínas Portadoras/genética , Estudios de Casos y Controles , Colesterol/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético , Fibroblastos/ultraestructura , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Glicoproteínas de Membrana/genética , Potencial de la Membrana Mitocondrial , Mitocondrias/ultraestructura , Mutación , Proteína Niemann-Pick C1 , Fosforilación Oxidativa , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Piel/patología
18.
Postepy Biochem ; 62(2): 149-157, 2016.
Artículo en Polaco | MEDLINE | ID: mdl-28132466

RESUMEN

Results of an intensive research performed during last 25 years have revealed that an understanding of biochemical and molecular principles of oxidative phosphorylation has not finished the streak of ground-breaking discoveries of newly identified mitochondrial functions in numerous cellular processes. Among other things it has been shown that mitochondria undergo reversible fission and fusion processes, and may form a complex network which functionally and structurally interacts with the endoplasmic reticulum membranes and probably also other organelles. An organization of mitochondrial network is closely controlled and is of high importance for numerous intracellular processes to occur properly. In this review, mitofusin 2 - one of a few proteins involved in a maintenance of an appropriate mitochondrial architecture, and in the consequence in the regulation of mitochondrial metabolism and calcium signalling, the controlling of the mitochondrial DNA level, and the regulation of cell proliferation and differentiation is the focus. Mutations within mitofusin 2-encoding gene are a cause of Charcot-Marie-Tooh 2A - type neuropathies while an affected expression of this protein seems to be related to neoplasia, type 2 diabetes, or vascular hyperplasia. Numerous experimental data confirm pleiotropic effects of mitofisin 2 in animal cells.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/fisiología , Calcio/metabolismo , Proliferación Celular , ADN Mitocondrial , Humanos , Mitocondrias/fisiología
19.
Pharmacol Rep ; 67(4): 704-10, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26321271

RESUMEN

Endothelial cells play an important physiological role in vascular homeostasis. They are also the first barrier that separates blood from deeper layers of blood vessels and extravascular tissues. Thus, they are exposed to various physiological blood components as well as challenged by pathological stimuli, which may exert harmful effects on the vascular system by stimulation of excessive generation of reactive oxygen species (ROS). The major sources of ROS are NADPH oxidase and mitochondrial respiratory chain complexes. Modulation of mitochondrial energy metabolism in endothelial cells is thought to be a promising target for therapy in various cardiovascular diseases. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial ROS generation and can antagonise oxidative stress-induced endothelial dysfunction. Several studies have revealed the important role of UCP2 in hyperglycaemia-induced modifications of mitochondrial function in endothelial cells. Additionally, potassium fluxes through the inner mitochondrial membrane, which are involved in ROS synthesis, affect the mitochondrial volume and change both the mitochondrial membrane potential and the transport of calcium into the mitochondria. In this review, we concentrate on the mitochondrial role in the cytoprotection phenomena of endothelial cells.


Asunto(s)
Endotelio Vascular/metabolismo , Mitocondrias/metabolismo , Animales , Fármacos Cardiovasculares/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Canales de Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
PLoS One ; 10(7): e0134162, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26230519

RESUMEN

Mitofusin 2 (Mfn2), mitochondrial outer membrane protein which is involved in rearrangement of these organelles, was first described in pathology of hypertension and diabetes, and more recently much attention is paid to its functions in Charcot-Marie-Tooth type 2A neuropathy (CMT2A). Here, cellular energy metabolism was investigated in mouse embryonic fibroblasts (MEF) differing in the presence of the Mfn2 gene; control (MEFwt) and with Mfn2 gene depleted MEFMfn2-/-. These two cell lines were compared in terms of various parameters characterizing mitochondrial bioenergetics. Here, we have shown that relative rate of proliferation of MEFMfn2-/- cells versus control fibroblasts depend on serum supplementation of the growth media. Moreover, MEFMfn2-/- cells exhibited significantly increased respiration rate in comparison to MEFwt, regardless of serum supplementation of the medium. This effect was correlated with increased level of mitochondrial markers (TOM20 and NAO) as well as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein levels and unchanged total ATP content. Interestingly, mitochondrial DNA content in MEFMfn2-/- cells was not reduced. Fundamentally, these results are in contrast to a commonly accepted belief that mitofusin 2 deficiency inevitably results in debilitation of mitochondrial energy metabolism. However, we suggest a balance between negative metabolic consequences of mitofusin 2 deficiency and adaptive processes exemplified by increased level of PGC-1α and TFAM transcription factor which prevent an excessive depletion of mtDNA and severe impairment of cell metabolism.


Asunto(s)
Metabolismo Energético , GTP Fosfohidrolasas/fisiología , Mitocondrias/metabolismo , Animales , Proliferación Celular , Células Cultivadas , GTP Fosfohidrolasas/genética , Potencial de la Membrana Mitocondrial , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA