Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39190250

RESUMEN

In the current work, the adsorption of acid black 1 (AB1), a hair dye, and methyl orange (MO) on anion exchange membrane BII (AEM-BII) in a binary system was studied experimentally. The effects study for contact time, adsorbent's and adsorbates' concentration, and temperature of aqueous media on the AB1 and MO removal, AEM-BII recovery, and reusability were also investigated. The highest removal was observed at optimum conditions, 150-min contact time and 5 g L-1 of adsorbent for AB1 (91.2%) and MO (83.4%). Adsorption kinetics was estimated by pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetics. The experimental findings were fitted well by PSO kinetics with an adsorption capacity of 19.45 ± 0.93 and 19.34 ± 0.84 mg g-1 for ABI and MO, respectively. Moreover, the adsorption isotherm study confirmed that AB1 and MO adsorption by AEM-BII from the binary system was followed by Langmuir isotherms. Adsorption thermodynamics revealed that adsorption of both AB1 and MO by AEM-BII was endothermic and spontaneous. Moreover, the desorption phenomenon of ABI and MO from the loaded AEM-BII showed that dye removal from AEM-BII was found to be 74.95%, demonstrating AEM-BII can be considered as good adsorbent for acidic dyes from the binary system.

2.
Chemosphere ; 303(Pt 2): 135088, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35636609

RESUMEN

In this study, a flower-like porous δ-MnO2 nanostructure was synthesized by a microwave-assisted hydrothermal process for adsorptive removal of strontium (Sr(II)) and cesium (Cs(I)) from wastewater. The prepared δ-MnO2 nanosorbent exhibited superior affinity for Sr(II) over Cs(I) in the single-solute system, with partition coefficient (PC) values of 10.2 and 2.3 L/g, respectively, at pH 6.0. In the two-solute system, the flower-like δ-MnO2 also adsorbed Sr(II) (PC = 3.81 L/g) more selectively than Cs(I) (PC 1.15 L/g). Further, their adsorption capacities decreased by 12 and 16%, respectively, relative to the single-solute system. In contrast, adsorption of the ions onto δ-MnO2 was affected less sensitively in dual than in single system when changes occurred in environmental variables such as pH (2-8) and ionic strength (1-100 mM). Adsorption kinetics, thermodynamics, and isotherm studies demonstrated the pivotal role of the monolayer surface active sites of endothermic δ-MnO2 (e.g., a complexation interaction with Mn-OH). Furthermore, the δ-MnO2 nanosorbent exhibited good regenerability, retaining more than 80% of its adsorption capacity when tested over four reuse cycles. The overall results of this study are expected to help establish strategies to effectively remove metal contaminants from wastewater using a green and low-cost hierarchical nanosorbent.


Asunto(s)
Cesio/química , Compuestos de Manganeso , Estroncio/química , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Compuestos de Manganeso/química , Microondas , Óxidos/química , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
3.
Membranes (Basel) ; 11(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673479

RESUMEN

This manuscript describes the synthesis of dimethylethanolamine (DMEA)-grafted anion exchange membrane (AEM) by incorporating dimethylethanolamine as ion-exchange content into the polymer matrix via the solution casting method. The synthesis of the DMEA-grafted AEM was demonstrated by Fourier transform infrared (FTIR) spectroscopy. The prepared DMEA-grafted AEM exhibited higher thermal stability, homogeneous morphology, water uptake (WR) of 115%, and an ion exchange capacity (IEC) of 2.70 meq/g. It was used for the adsorptive removal of methyl orange (MO) from an aqueous solution via batch processing. The effect of several operating factors, including contact time, membrane dosage, initial concentration of aqueous dye solution, and temperature on the percentage discharge of MO and adsorption capacity, was evaluated. Experimental data for adsorption of MO onto the DMEA-grafted AEM was analyzed with two parameter and three parameter nonlinear adsorption isotherm models but fitted best using a nonlinear Freundlich isotherm. Adsorption kinetics were studied by using several models, and attained results showed that experimental data fitted well to pseudo-second-order kinetics. A thermodynamic study showed that adsorption of MO onto the prepared DMEA-grafted AEM was an endothermic process. Moreover, it was a feasible and spontaneous process.

4.
Materials (Basel) ; 10(3)2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28772627

RESUMEN

To reduce the environmental impact of acids present in various industrial wastes, improved and robust anion exchange membranes (AEMs) are highly desired. Moreover, they should exhibit high retention of salts, fast acid permeation and they should be able to operate with low energy input. In this work, AEMs are prepared using a facile solution-casting from brominated poly-(2,6-dimethyl-1,4-phenylene oxide) (BPPO) and increasing amounts of 2-phenylimidazole (PI). Neither quaternary ammonium salts, nor ionic liquids and silica-containing compounds are involved in the synthesis. The prepared membranes showed an ion exchange capacity of 1.1-1.8 mmol/g, a water uptake of 22%-47%, a linear expansion ratio of 1%-6% and a tensile strength of 0.83-10.20 MPa. These membranes have potential for recovering waste acid via diffusion dialysis, as the acid dialysis coefficient (UH) at room temperature for HCl is in the range of 0.006-0.018 m/h while the separation factor (S) is in the range of 16-28, which are higher than commercial DF-120B membranes (UH = 0.004 m/h, S = 24).

5.
Materials (Basel) ; 8(7): 4147-4161, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793430

RESUMEN

The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA