Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Geochem Trans ; 25(1): 1, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206422

RESUMEN

Bardawil Lake is a unique aquatic ecosystem that provides a habitat for various fish and other marine organisms. This study aimed to analyze the quality of fish species to prove that this lake is free of pollution, not other Egyptian lakes, due to the accumulation of some heavy metals (Cd, Pb, Cu, and Zn) in various tissues of fish species that were caught from this lake. Thirty-five fish samples were caught during the Spring of 2018 from seven different species: Mugil cephalus, Liza auratus, Sparus aurata, Dicentrarchus labrax, Siganus rivulatus, Anguilla angilla, and Solae solea. The Association of Official Analytical Chemists methods using a spectrophotometer determined the biochemical composition. In contrast, atomic absorption spectrometry (AAS) was employed to determine the heavy metals expressed by µg/g wet weight. Results exposed that the accumulation of essential micronutrient (Cu, Zn) content was higher than toxic elements (Cd & Pb) in muscles in order to Zn > Cu > Pb > Cd. Muscles < gills < liver in order of all metals except Pb with order muscles < liver < gills. The metals studied in the muscles were lower than those set by the WHO and the EU standards. The carcinogenic risk with lower allowable limits of 1 × 10-6 to 1 × 10-4 in both normal and high consumption groups; target and total target hazard quotients (THQ & HI) in muscles were < 1. The biochemical composition level was highest in the liver, except for protein, which was highest in muscle for all fish species. There is no evidence of harmful contaminants in the muscular tissue of the fish sampled from Bardawil Lake, although fishing activity. However, customers should know that health concerns may be associated with overeating fish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA