Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37435808

RESUMEN

Understanding the function of glutamate transporters has broad implications for explaining how neurons integrate information and relay it through complex neuronal circuits. Most of what is currently known about glutamate transporters, specifically their ability to maintain glutamate homeostasis and limit glutamate diffusion away from the synaptic cleft, is based on studies of glial glutamate transporters. By contrast, little is known about the functional implications of neuronal glutamate transporters. The neuronal glutamate transporter EAAC1 is widely expressed throughout the brain, particularly in the striatum, the primary input nucleus of the basal ganglia, a region implicated with movement execution and reward. Here, we show that EAAC1 limits synaptic excitation onto a population of striatal medium spiny neurons identified for their expression of D1 dopamine receptors (D1-MSNs). In these cells, EAAC1 also contributes to strengthen lateral inhibition from other D1-MSNs. Together, these effects contribute to reduce the gain of the input-output relationship and increase the offset at increasing levels of synaptic inhibition in D1-MSNs. By reducing the sensitivity and dynamic range of action potential firing in D1-MSNs, EAAC1 limits the propensity of mice to rapidly switch between behaviors associated with different reward probabilities. Together, these findings shed light on some important molecular and cellular mechanisms implicated with behavior flexibility in mice.


Asunto(s)
Neuronas Espinosas Medianas , Receptores de Dopamina D1 , Ratones , Animales , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Neuronas/fisiología , Cuerpo Estriado/fisiología , Ácido Glutámico/metabolismo , Ratones Transgénicos
2.
Cell Rep ; 33(2): 108255, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053337

RESUMEN

Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing.


Asunto(s)
Astrocitos/fisiología , Región CA1 Hipocampal/fisiología , Ritmo Circadiano/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Región CA1 Hipocampal/ultraestructura , Relojes Circadianos/genética , Corticosterona/metabolismo , Oscuridad , Potenciales Postsinápticos Excitadores/fisiología , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Memoria/fisiología , Ratones Endogámicos C57BL , Hilos del Neurópilo/metabolismo , Prueba de Campo Abierto , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Factores de Tiempo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA