Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 466, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741045

RESUMEN

BACKGROUND: Protein-protein interactions (PPIs) hold significant importance in biology, with precise PPI prediction as a pivotal factor in comprehending cellular processes and facilitating drug design. However, experimental determination of PPIs is laborious, time-consuming, and often constrained by technical limitations. METHODS: We introduce a new node representation method based on initial information fusion, called FFANE, which amalgamates PPI networks and protein sequence data to enhance the precision of PPIs' prediction. A Gaussian kernel similarity matrix is initially established by leveraging protein structural resemblances. Concurrently, protein sequence similarities are gauged using the Levenshtein distance, enabling the capture of diverse protein attributes. Subsequently, to construct an initial information matrix, these two feature matrices are merged by employing weighted fusion to achieve an organic amalgamation of structural and sequence details. To gain a more profound understanding of the amalgamated features, a Stacked Autoencoder (SAE) is employed for encoding learning, thereby yielding more representative feature representations. Ultimately, classification models are trained to predict PPIs by using the well-learned fusion feature. RESULTS: When employing 5-fold cross-validation experiments on SVM, our proposed method achieved average accuracies of 94.28%, 97.69%, and 84.05% in terms of Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori datasets, respectively. CONCLUSION: Experimental findings across various authentic datasets validate the efficacy and superiority of this fusion feature representation approach, underscoring its potential value in bioinformatics.


Asunto(s)
Biología Computacional , Mapeo de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Biología Computacional/métodos , Algoritmos , Helicobacter pylori/metabolismo , Helicobacter pylori/genética , Máquina de Vectores de Soporte , Proteínas/metabolismo , Proteínas/química , Humanos , Mapas de Interacción de Proteínas , Bases de Datos de Proteínas
2.
PeerJ Comput Sci ; 10: e1903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660174

RESUMEN

Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.

3.
Adv Bioinformatics ; 2017: 4827171, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28250767

RESUMEN

Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

4.
Comput Biol Chem ; 59 Pt B: 3-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26278974

RESUMEN

A gene regulatory network (GRN) is a large and complex network consisting of interacting elements that, over time, affect each other's state. The dynamics of complex gene regulatory processes are difficult to understand using intuitive approaches alone. To overcome this problem, we propose an algorithm for inferring the regulatory interactions from knock-out data using a Gaussian model combines with Pearson Correlation Coefficient (PCC). There are several problems relating to GRN construction that have been outlined in this paper. We demonstrated the ability of our proposed method to (1) predict the presence of regulatory interactions between genes, (2) their directionality and (3) their states (activation or suppression). The algorithm was applied to network sizes of 10 and 50 genes from DREAM3 datasets and network sizes of 10 from DREAM4 datasets. The predicted networks were evaluated based on AUROC and AUPR. We discovered that high false positive values were generated by our GRN prediction methods because the indirect regulations have been wrongly predicted as true relationships. We achieved satisfactory results as the majority of sub-networks achieved AUROC values above 0.5.


Asunto(s)
Biología Computacional , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes/genética , Modelos Genéticos , Algoritmos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA