Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Luminescence ; 39(5): e4759, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693721

RESUMEN

Colloidal semiconductor quantum dots have many potential optical applications, including quantum dot light-emitting diodes, single-photon sources, or biological luminescent markers. The optical properties of colloidal quantum dots can be affected by their dielectric environment. This study investigated the photoluminescence (PL) decay of thick-shell gradient-alloyed colloidal semiconductor quantum dots as a function of solvent refractive index. These measurements were conducted in a wide range of delay times to account for both the initial spontaneous decay of excitons and the delayed emission of excitons that has the form of a power law. It is shown that whereas the initial spontaneous PL decay is very sensitive to the refractive index of the solvent, the power-law delayed emission of excitons is not. Our results seem to exclude the possibility of carrier self-trapping in the considered solvents and suggest the existence of trap states inside the quantum dots. Finally, our data show that the average exciton lifetime significantly decreases as a function of the solvent refractive index. The change in exciton lifetime is qualitatively modeled and discussed.


Asunto(s)
Coloides , Luminiscencia , Puntos Cuánticos , Solventes , Puntos Cuánticos/química , Solventes/química , Coloides/química , Refractometría , Mediciones Luminiscentes , Semiconductores , Factores de Tiempo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124094, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503257

RESUMEN

The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Sustitución de Aminoácidos , Amiloide/química , Escherichia coli/genética , Escherichia coli/metabolismo , Péptidos/química , Iones
3.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38470740

RESUMEN

The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO2/Ag2O/Au0, TiO2/Ag2O/PtOx, TiO2/Cu2O/Au0, and TiO2/Cu2O/PtOx obtained via one-step anodic oxidation of the titanium-based alloys (Ti94Ag5Au1, Ti94Cu5Pt1, Ti94Cu5Au1, and Ti94Ag5Pt1) possessing high visible light activity in the inactivation process of methicillin-susceptible S. aureus and other pathogenic bacteria-E. coli, Clostridium sp., and K. oxytoca. In the samples made from Ti-based alloys, metal/metal oxide nanoparticles were formed, which were located on the surface and inside the walls of the NTs. The obtained results showed that oxygen species produced at the surface of irradiated photocatalysts and the presence of copper and silver species in the photoactive layers both contributed to the inactivation of bacteria. Photocatalytic inactivation of E. coli, S. aureus, and Clostridium sp. was confirmed via TEM imaging of bacterium cell destruction and the detection of CO2 as a result of bacteria cell mineralization for the most active sample. These results suggest that the membrane ruptures as a result of the attack of active oxygen species, and then, both the membrane and the contents are mineralized to CO2.

4.
Nano Lett ; 22(23): 9219-9226, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36442075

RESUMEN

Transmission electron microscopy is a basic technique used for examining matter at the highest magnification scale available. One of its most challenging branches is in situ microscopy, in which dynamic processes are observed in real time. Among the various stimuli, like strain, temperature, and magnetic or electric fields, the light-matter interaction is rarely observed. However, in recent years, a significant increase in the interest in this technique has been observed. Therefore, I present a summary and critical review of all the in situ experiments performed with light, various technical possibilities for bringing radiation inside the transmission electron microscope, and the most important differences between the effects of light and electrons on the studied matter. Finally, I summarize the most promising directions for further research using light excitation.


Asunto(s)
Electricidad , Electrones , Microscopía Electrónica de Transmisión , Magnetismo
5.
Ultramicroscopy ; 230: 113388, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509894

RESUMEN

Antibacterial photodynamic therapy is a promising treatment for problematic infections caused by bacteria and fungi. Despite its undoubted effectiveness, the ultrastructural mechanism of microbial death remains not fully described and distinct organisms respond to the treatment with different efficacy. For this reason, it was decided to try imaging the process using the in situ transmission electron microscopy method. To conduct an observational experiment, the microscope was significantly modified. Liquid cell methods were used, electron doses and their influence on the sample were estimated, and a fiber-optic sample illuminator was designed and built. The modifications allowed for the light-induced characterization of photosensitizer-bacteria interaction. Microscope modification is a promising platform for further studies of light-induced phenomena in both life and material science.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Antibacterianos/farmacología , Microscopía Electrónica de Transmisión , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología
6.
Photodiagnosis Photodyn Ther ; 35: 102463, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34325078

RESUMEN

The novel approach for imaging of antimicrobial photodynamic therapy processes presented in this work is based on transmission electron microscopy methods. With the use of liquid cell, illumination system, and lowered electron dose the successful light-induced in-situ observations on Staphylococcus aureus encapsulated with methylene blue were performed. Results showed that with specified imaging parameters it is possible to conduct reliable research on bacteria in electron microscope despite the unfavorable damaging effect of the highly energetic electron beam used for imaging. This approach differs from the common methods, as it provides direct observations of the processes occurring upon light illumination. The effects obtained with the proposed method are very promising and may serve to answer why different microorganisms respond to the therapy differently.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Microscopía Electrónica de Transmisión , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
7.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066237

RESUMEN

CsgA is an aggregating protein from bacterial biofilms, representing a class of functional amyloids. Its amyloid propensity is defined by five fragments (R1-R5) of the sequence, representing non-perfect repeats. Gate-keeper amino acid residues, specific to each fragment, define the fragment's propensity for self-aggregation and aggregating characteristics of the whole protein. We study the self-aggregation and secondary structures of the repeat fragments of Salmonella enterica and Escherichia coli and comparatively analyze their potential effects on these proteins in a bacterial biofilm. Using bioinformatics predictors, ATR-FTIR and FT-Raman spectroscopy techniques, circular dichroism, and transmission electron microscopy, we confirmed self-aggregation of R1, R3, R5 fragments, as previously reported for Escherichia coli, however, with different temporal characteristics for each species. We also observed aggregation propensities of R4 fragment of Salmonella enterica that is different than that of Escherichia coli. Our studies showed that amyloid structures of CsgA repeats are more easily formed and more durable in Salmonella enterica than those in Escherichia coli.


Asunto(s)
Amiloide/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Salmonella enterica/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Agregado de Proteínas , Conformación Proteica , Salmonella enterica/genética , Salmonella enterica/crecimiento & desarrollo , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA