Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(46): 26376-26384, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34792064

RESUMEN

The magnetic properties of M2AX (M = Mn, Fe; A = Al, Ga, Si, Ge; X = C, N) phases were studied within DFT-GGA. The magnetic electronic ground state is determined. The investigation of the phase stability of M2AX phases is performed by comparing the total energy of MAX phases to that of the set of competitive phases for calculation of the phase formation enthalpy. As the result of such an approach, we have found one stable compound (Mn2GaC), and seven metastable ones. It is shown that several metastable MAX phases (Mn2AlC, Fe2GaC, Mn2GeC, and Mn2GeN) become stable at a small applied pressure (1.5-7 GPa). The mechanical, electronic and elastic properties of metastable MAX phases are studied.

2.
J Phys Chem Lett ; 10(8): 1840-1844, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30917660

RESUMEN

Local and fast structural probes using synchrotron radiation have shown nanoscale striped puddles and nanoscale phase separation in doped perovskites. It is known that the striped phases in doped perovskites are due to competing interactions involving charge, spin, and lattice degrees of freedom. In this work, we show that two different stripes can be represented as a superposition of a pair of stripes, U(θ n) or D(θ n), characterized by perovskite tilts where one of the pair is rotated in relation to the other partner by an angle Δθ n = π/2. The spatial distribution of the U and D stripes is reduced to all possible maps in the well-known mathematical four-color theorem. Both the periodic striped puddles and random structures can be represented by using planar graphs with a chromatic number χ ≤ 4. To observe the colors in mapping experiments, it is necessary to recover variously oriented tilting effects from the replica. It is established that there is an interplay between the annihilation/creation of new stripes and ordering/disordering tilts in relation to the θ n angle in the CuO2 plane, where the characteristic shape of the stripes coincides with the tilting-ordered regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA