Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neural Dev ; 12(1): 7, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28482867

RESUMEN

BACKGROUND: In developing tissues, cell polarity and tissue architecture play essential roles in the regulation of proliferation and differentiation. During cerebral cortical development, adherens junctions link highly polarized radial glial cells in a neurogenic niche that controls their behavior. How adherens junctions regulate radial glial cell polarity and/or differentiation in mammalian cortical development is poorly understood. RESULTS: Conditional deletion of Afadin, a protein required for formation and maintenance of epithelial tissues, leads to abnormalities in radial glial cell polarity and subsequent loss of adherens junctions. We observed increased numbers of obliquely-oriented progenitor cell divisions, increased exit from the ventricular zone neuroepithelium, and increased production of intermediate progenitors. CONCLUSIONS: Together, these findings indicate that Afadin plays an essential role in regulating apical-basal polarity and adherens junction integrity of radial glial cells, and suggest that epithelial architecture plays an important role in radial glial identity by regulating mitotic orientation and preventing premature exit from the neurogenic niche.


Asunto(s)
Uniones Adherentes/fisiología , Polaridad Celular , Corteza Cerebral/embriología , Células Ependimogliales/fisiología , Proteínas de Microfilamentos/fisiología , Huso Acromático/fisiología , Uniones Adherentes/metabolismo , Animales , División Celular , Proliferación Celular , Corteza Cerebral/metabolismo , Células Ependimogliales/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Huso Acromático/metabolismo
2.
Sci Rep ; 6: 20201, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26830657

RESUMEN

To study mechanisms that regulate the construction of inhibitory circuits, we examined the role of brain-derived neurotrophic factor (BDNF) in the assembly of GABAergic inhibitory synapses in the mouse cerebellar cortex. We show that within the cerebellum, BDNF-expressing cells are restricted to the internal granular layer (IGL), but that the BDNF protein is present within mossy fibers which originate from cells located outside of the cerebellum. In contrast to deletion of TrkB, the cognate receptor for BDNF, deletion of Bdnf from cerebellar cell bodies alone did not perturb the localization of pre- or postsynaptic constituents at the GABAergic synapses formed by Golgi cell axons on granule cell dendrites within the IGL. Instead, we found that BDNF derived from excitatory mossy fiber endings controls their differentiation. Our findings thus indicate that cerebellar BDNF is derived primarily from excitatory neurons--precerebellar nuclei/spinal cord neurons that give rise to mossy fibers--and promotes GABAergic synapse formation as a result of release from axons. Thus, within the cerebellum the preferential localization of BDNF to axons enhances the specificity through which BDNF promotes GABAergic synaptic differentiation.


Asunto(s)
Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/fisiología , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Sinapsis/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Contactina 1/genética , Contactina 1/metabolismo , Expresión Génica , Ratones , Ratones Transgénicos , Terminaciones Nerviosas/metabolismo , Fibras Nerviosas/metabolismo , Transporte de Proteínas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transducción de Señal
3.
Dis Model Mech ; 6(5): 1205-12, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23744273

RESUMEN

Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Integrin-linked kinase (ILK) is a serine/threonine kinase and a major regulator of integrin signaling. It links integrins to the actin cytoskeleton and recruits other adaptor molecules into a large complex to regulate actin dynamics and integrin function. Using the Cre-lox system, we deleted Ilk from NCCs of mice to investigate its role in NCC morphogenesis. The resulting mutants developed a severe aneurysmal arterial trunk that resulted in embryonic lethality during late gestation. Ilk mutants showed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and the outflow tract. Within the conotruncal cushions, Ilk-deficient NCCs exhibited disorganization of F-actin stress fibers and a significantly rounder morphology, with shorter cellular projections. Additionally, absence of ILK resulted in reduced in vivo phosphorylation of Smad3 in NCCs, which correlated with reduced αSMA levels. Our findings resemble those seen in Pinch1 and ß1 integrin conditional mutant mice, and therefore support that, in neural crest-derived cells, ILK and Pinch1 act as cytoplasmic effectors of ß1 integrin in a pathway that protects against aneurysms. In addition, our conditional Ilk mutant mice might prove useful as a model to study aortic aneurysms caused by reduced Smad3 signaling, as occurs in the newly described aneurysms-osteoarthritis syndrome, for example.


Asunto(s)
Aneurisma de la Aorta/enzimología , Aneurisma de la Aorta/patología , Pérdida del Embrión/enzimología , Eliminación de Gen , Cresta Neural/enzimología , Cresta Neural/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Citoesqueleto de Actina/metabolismo , Animales , Aorta Torácica/anomalías , Aorta Torácica/embriología , Aorta Torácica/patología , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/patología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/patología , Pérdida del Embrión/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Integrasas/metabolismo , Ratones , Ratones Mutantes , Morfogénesis , Especificidad de Órganos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
4.
PLoS Biol ; 11(1): e1001469, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349620

RESUMEN

The cerebral cortex performs complex cognitive functions at the expense of tremendous energy consumption. Blood vessels in the brain are known to form stereotypic patterns that facilitate efficient oxygen and nutrient delivery. Yet little is known about how vessel development in the brain is normally regulated. Radial glial neural progenitors are well known for their central role in orchestrating brain neurogenesis. Here we show that, in the late embryonic cortex, radial glial neural progenitors also play a key role in brain angiogenesis, by interacting with nascent blood vessels and regulating vessel stabilization via modulation of canonical Wnt signaling. We find that ablation of radial glia results in vessel regression, concomitant with ectopic activation of Wnt signaling in endothelial cells. Direct activation of Wnt signaling also results in similar vessel regression, while attenuation of Wnt signaling substantially suppresses regression. Radial glial ablation and ectopic Wnt pathway activation leads to elevated endothelial expression of matrix metalloproteinases, while inhibition of metalloproteinase activity significantly suppresses vessel regression. These results thus reveal a previously unrecognized role of radial glial progenitors in stabilizing nascent brain vascular network and provide novel insights into the molecular cascades through which target neural tissues regulate vessel stabilization and patterning during development and throughout life.


Asunto(s)
Encéfalo/irrigación sanguínea , Corteza Cerebral/irrigación sanguínea , Células-Madre Neurales/metabolismo , Complejo de Reconocimiento del Origen/genética , Nervio Radial/embriología , Animales , Puntos de Control del Ciclo Celular , Células Cultivadas , Proteínas del Ojo/genética , Femenino , Proteínas de Homeodominio/genética , Masculino , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Neovascularización Fisiológica , Neurogénesis , Neuroglía/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , ARN Mensajero/biosíntesis , Nervio Radial/metabolismo , Proteínas Represoras/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
5.
J Neurosci ; 32(1): 99-110, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22219273

RESUMEN

Many molecules regulate synaptogenesis, but intracellular signaling pathways required for their functions are poorly understood. Afadin is a Rap-regulated, actin-binding protein that promotes cadherin complex assembly as well as binding many other cell adhesion molecules and receptors. To examine its role in mediating synaptogenesis, we deleted afadin (mllt1), using a conditional allele, in postmitotic hippocampal neurons. Consistent with its role in promoting cadherin recruitment, afadin deletion resulted in 70% fewer and less intense N-cadherin puncta with similar reductions of ß-catenin and αN-catenin puncta densities and 35% reduction in EphB2 puncta density. Its absence also resulted in 40% decreases in spine and excitatory synapse densities in the stratum radiatum of CA1, as determined by morphology, apposition of presynaptic and postsynaptic markers, and synaptic transmission. The remaining synapses appeared to function normally. Thus, afadin is a key intracellular signaling molecule for cadherin recruitment and is necessary for spine and synapse formation in vivo.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Cadherinas/fisiología , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Proteínas de Microfilamentos/genética , Membranas Sinápticas/metabolismo , Animales , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/ultraestructura , Línea Celular , Espinas Dendríticas/ultraestructura , Femenino , Técnicas de Sustitución del Gen/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Proteínas de Microfilamentos/deficiencia , Técnicas de Cultivo de Órganos , Membranas Sinápticas/ultraestructura
6.
Proc Natl Acad Sci U S A ; 108(4): 1669-74, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21205893

RESUMEN

In the peripheral nervous system, target tissues control the final size of innervating neuronal populations by producing limited amounts of survival-promoting neurotrophic factors during development. However, it remains largely unknown if the same principle works to regulate the size of neuronal populations in the developing brain. Here we show that neurotrophin signaling mediated by the TrkB receptor controls striatal size by promoting the survival of developing medium-sized spiny neurons (MSNs). Selective deletion of the gene for the TrkB receptor in striatal progenitors, using the Dlx5/6-Cre transgene, led to a hindpaw-clasping phenotype and a 50% loss of MSNs without affecting striatal interneurons. This loss resulted mainly from increased apoptosis of newborn MSNs within their birthplace, the lateral ganglionic eminence. Among MSNs, those expressing the dopamine receptor D2 (DRD2) were most affected, as indicated by a drastic loss of these neurons and specific down-regulation of the DRD2 and enkephalin. This specific phenotype of mutant animals is likely due to preferential TrkB expression in DRD2 MSNs. These findings suggest that neurotrophins can control the size of neuronal populations in the brain by promoting the survival of newborn neurons before they migrate to their final destinations.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptor trkB/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Recuento de Células , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Regulación hacia Abajo , Encefalinas/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/citología , Receptor trkB/genética , Receptores de Dopamina D2/metabolismo , Factores de Tiempo
7.
Mol Biol Cell ; 21(1): 36-49, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19864463

RESUMEN

Neurotrophins at axonal terminals signal to cell bodies to regulate neuronal development via signaling endosomes containing activated Trk receptor tyrosine kinases and mitogen-activated protein kinases (MAPKs). Requirements for the formation of signaling endosomes remain, however, poorly characterized. Here we show that a novel Trk-interacting protein, NTRAP (neurotrophic factor receptor-associated protein), plays a crucial role in this signaling process. NTRAP interacts with the Trk intracellular domain through its C(2)H(2) zinc fingers in a kinase-dependent manner. It is associated with vesicles, some of which contain markers for signaling endosomes. Inhibition of NTRAP function suppresses neurotrophin-induced neurite outgrowth in PC12 cells by altering TrkA endocytic traffic, inhibiting the formation of endosomes containing persistently active MAPKs. In compartmentalized sensory neuron cultures, down-regulation of NTRAP abolishes the ability of neurotrophins applied to distal axons to activate the transcription factor adenosine 3',5'-monophosphate response element-binding protein (CREB) and to promote neuronal survival. We propose that NTRAP regulates retrograde neurotrophic signaling by controlling the formation of signaling endosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Dedos de Zinc , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Diferenciación Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Activación Enzimática/efectos de los fármacos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/farmacología , Células PC12 , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptor trkA/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/efectos de los fármacos
8.
J Clin Invest ; 119(8): 2218-30, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19587446

RESUMEN

Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Focal adhesion kinase (FAK) mediates signal transduction by integrin and growth factor receptors, each of which is important for normal cardiovascular development. To investigate the role of FAK in NCC morphogenesis, we deleted it in murine NCCs using Wnt1cre, yielding craniofacial and cardiovascular malformations resembling those observed in individuals with DiGeorge syndrome. In these mice, we observed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and impaired cardiac outflow tract rotation, which resulted in a dextroposed aortic root. Moreover, within the conotruncal cushions, Fak-deficient NCCs formed a less organized mesenchyme, with reduced expression of perlecan and semaphorin 3C, and exhibited disorganized F-actin stress fibers within the aorticopulmonary septum. Additionally, absence of Fak resulted in reduced in vivo phosphorylation of Crkl and Erk1/2, components of a signaling pathway essential for NCC development. Consistent with this, both TGF-beta and FGF induced FAK and Crkl phosphorylation in control but not Fak-deficient NCCs in vitro. Our results indicate that FAK plays an essential role in cardiac outflow tract development by promoting the activation of molecules such as Crkl and Erk1/2.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Corazón/embriología , Morfogénesis , Cresta Neural/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Anomalías Craneofaciales/etiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Cardiopatías Congénitas/etiología , Integrina beta1/fisiología , Ratones , Mutación , Cresta Neural/citología , Proteínas Nucleares/metabolismo , Fosforilación , Transducción de Señal
9.
Mol Cell Neurosci ; 38(3): 431-43, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18511296

RESUMEN

BDNF signaling through its TrkB receptor plays a pivotal role in activity-dependent refinement of synaptic connectivity of retinal ganglion cells. Additionally, studies using TrkB knockout mice have suggested that BDNF/TrkB signaling is essential for the development of photoreceptors and for synaptic communication between photoreceptors and second order retinal neurons. Thus the action of BDNF on refinement of synaptic connectivity of retinal ganglion cells could be a direct effect in the inner retina, or it could be secondary to its proposed role in rod maturation and in the formation of rod to bipolar cell synaptic transmission. To address this matter we have conditionally eliminated TrkB within the retina. We find that rod function and synaptic transmission to bipolar cells is not compromised in these conditional knockout mice. Consistent with previous work, we find that inner retina neural development is regulated by retinal BDNF/TrkB signaling. Specifically we show here also that the complexity of neuronal processes of dopaminergic cells is reduced in conditional TrkB knockout mice. We conclude that retinal BDNF/TrkB signaling has its primary role in the development of inner retinal neuronal circuits, and that this action is not a secondary effect due to the loss of visual signaling in the outer retina.


Asunto(s)
Receptor trkB/fisiología , Retina/crecimiento & desarrollo , Retina/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Receptor trkB/deficiencia , Receptor trkB/genética , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Am J Pathol ; 171(6): 1966-77, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18055553

RESUMEN

Integrin-linked kinase (Ilk) is a serine/threonine kinase and an adaptor protein that links integrins to the actin cytoskeleton and to a number of signaling pathways involved in integrin action. We hypothesized that Ilk may act as an important effector of integrins in skeletal muscle, where these receptors provide a critical link between the sarcolemma and the extracellular matrix. Using the cre/lox system, we deleted Ilk from skeletal muscles of mice. The resulting mutants developed a progressive muscular dystrophy with multiple degenerating and regenerating muscle fibers, increased central nuclei, and endomysial fibrosis. These defects were widespread but were most severe near myofascial junctions where Ilk mutants showed displacement of focal adhesion-related proteins, including vinculin, paxillin, focal adhesion kinase, dystrophin, and the alpha 7 beta 1D-integrin subunits. Distal ends of mutant muscle fibers appeared irregular, and there was restructuring of the actin cytoskeleton. These findings resemble those seen in humans and mice lacking the alpha 7-integrin subunit and suggest that Ilk may act as a cytoplasmic effector of alpha 7 beta1-integrin in the pathogenesis of these deficiencies.


Asunto(s)
Integrinas/deficiencia , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Adhesiones Focales , Ratones , Ratones Noqueados , Músculo Esquelético/fisiología , Mutación , Proteínas Serina-Treonina Quinasas/genética
11.
J Neurosci ; 26(43): 11208-19, 2006 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-17065460

RESUMEN

Integrins are a large family of cell adhesion receptors involved in a variety of cellular functions. To study their roles at central synapses, we used two cre recombinase lines to delete the Itgb1 beta1 integrin gene in forebrain excitatory neurons at different developmental stages. Removal of the beta1 integrins at an embryonic stage resulted in severe cortical lamination defects without affecting the cellular organization of pyramidal neurons in the CA3 and CA1 regions of the hippocampus. Whereas the hippocampal neurons underwent normal dendritic and synaptic differentiation, the adult synapses exhibited deficits in responses to high-frequency stimulation (HFS), as well as in long-term potentiation (LTP). Deletion of beta1 integrin at a later postnatal stage also impaired LTP but not synaptic responses to HFS. Thus, the beta1-class integrins appear to play distinct roles at different stages of synaptic development, critical for the proper maturation of readily releasable pool of vesicles during early development but essential for LTP throughout adult life.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Integrina beta1/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/embriología , Técnicas In Vitro , Integrina beta1/biosíntesis , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Vesículas Sinápticas/fisiología
12.
Neuron ; 51(1): 43-56, 2006 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-16815331

RESUMEN

Both the cadherin-catenin complex and Rho-family GTPases have been shown to regulate dendrite development. We show here a role for p120 catenin (p120ctn) in regulating spine and synapse formation in the developing mouse brain. p120catenin gene deletion in hippocampal pyramidal neurons in vivo resulted in reduced spine and synapse densities along dendrites. In addition, p120 catenin loss resulted in reduced cadherin levels and misregulation of Rho-family GTPases, with decreased Rac1 and increased RhoA activity. Analyses in vitro indicate that the reduced spine density reflects aberrant Rho-family GTPase signaling, whereas the effects on spine maturation appear to result from reduced cadherin levels and possibly aberrant Rho-family GTPase signaling. Thus, p120ctn acts as a signal coordinator between cadherins and Rho-family GTPases to regulate cytoskeletal changes required during spine and synapse development.


Asunto(s)
Encéfalo/embriología , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Espinas Dendríticas/metabolismo , Fosfoproteínas/metabolismo , Sinapsis/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Cateninas , Moléculas de Adhesión Celular/genética , Diferenciación Celular/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Espinas Dendríticas/ultraestructura , Regulación hacia Abajo/genética , Eliminación de Gen , Hipocampo/citología , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Fosfoproteínas/genética , Células Piramidales/citología , Células Piramidales/metabolismo , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Catenina delta
13.
J Neurosci ; 25(43): 9940-8, 2005 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-16251442

RESUMEN

We showed previously that loss of the integrin beta8 subunit, which forms alphavbeta8 heterodimers, results in abnormal vascular development in the yolk sac, placenta, and brain. Animals lacking the integrin beta8 (itgbeta8) gene die either at midgestation, because of insufficient vascularization of the placenta and yolk sac, or shortly after birth with severe intracerebral hemorrhage. To specifically focus on the role of integrins containing the beta8 subunit in the brain, and to avoid early lethalities, we used a targeted deletion strategy to delete itgbeta8 only from cell types within the brain. Ablating itgbeta8 from vascular endothelial cells or from migrating neurons did not result in cerebral hemorrhage. Targeted deletion of itgbeta8 from the neuroepithelium, however, resulted in bilateral hemorrhage at postnatal day 0, although the phenotype was less severe than in itgbeta8-null animals. Newborn mice lacking itgbeta8 from the neuroepithelium had hemorrhages in the cortex, ganglionic eminence, and thalamus, as well as abnormal vascular morphogenesis, and disorganized glia. Interestingly, adult mice lacking itgbeta8 from cells derived from the neuroepithelium did not show signs of hemorrhage. We propose that defective association between vascular endothelial cells and glia lacking itgbeta8 is responsible for the leaky vasculature seen during development but that an unidentified compensatory mechanism repairs the vasculature after birth.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Encéfalo , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Cadenas beta de Integrinas/metabolismo , Actinas/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/fisiopatología , Colágeno Tipo IV/metabolismo , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica/métodos , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Laminina/metabolismo , Lectinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Nestina , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Mensajero/biosíntesis , Receptor TIE-1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
14.
J Cell Biol ; 170(4): 527-35, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16087709

RESUMEN

The origin recognition complex (ORC) ensures exactly one round of genome replication per cell cycle through acting as a molecular switch that precisely controls the assembly, firing, and inactivation of the replication initiation machinery. Recent data indicate that it may also coordinate the processes of mitosis and cytokinesis and ensure the proper distribution of replicated genome to daughter cells. We have found that the ORC core subunits are highly expressed in the nervous system. They are selectively localized to the neuronal somatodendritic compartment and enriched in the membrane fraction. siRNA knockdown of ORC subunits dramatically reduced dendritic branch formation and severely impeded dendritic spine emergence. Expression of ORC ATPase motif mutants enhanced the branching of dendritic arbors. The ORC core complex thus appears to have a novel role in regulating dendrite and dendritic spine development in postmitotic neurons.


Asunto(s)
Replicación del ADN , Espinas Dendríticas/metabolismo , Mitosis , Complejo de Reconocimiento del Origen/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Animales , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Ratones , Proteínas Mutantes/metabolismo , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Seudópodos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
15.
J Comp Neurol ; 480(4): 392-414, 2004 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-15558783

RESUMEN

Neurotrophin-activated receptor tyrosine kinases (Trks) regulate sensory neuron survival, differentiation, and function. To permanently mark cells that ever express TrkC-kinase, mice with lacZ and GFP reporters of Cre recombinase activity were crossed with mice having IRES-cre inserted into the kinase-containing exon of the TrkC gene. Prenatal reporter expression matched published locations of TrkC-expression. Postnatally, more trigeminal neurons and types of mystacial pad innervation expressed reporter than immunodetectable TrkC, indicating that some innervation transiently expresses TrkC-kinase. Reporter-tagged neurons include all those that immunolabel for TrkC, a majority for TrkB, and a small proportion for TrkA. TrkA neurons expressing TrkC-reporter range from small to large size and supply well-defined types of mystacial pad innervation. Virtually all small neurons and C-fiber innervation requires TrkA to develop, but TrkC-reporter is present in only a small proportion that uniquely innervates piloneural complexes of guard hairs and inner conical bodies of vibrissa follicle-sinus complexes. TrkC-reporter is expressed in nearly all presumptive Adelta innervation, which is all eliminated in TrkA knockouts and partially eliminated in TrkC knockouts. Many types of Abeta-fiber innervation express TrkC-reporter including all Merkel, spiny, and circumferentially oriented lanceolate endings, and some reticular and longitudinally oriented lanceolate endings. Only Merkel endings require TrkC to develop and survive, whereas the other endings require TrkA and/or TrkB. Thus, TrkC is required for the existence of some types of innervation that express TrkC, but may have different functions in others. Many types of nonneuronal cells affiliated with hair follicles and blood vessels also express TrkC-reporter but lack immunodetectable TrkC.


Asunto(s)
Dermis/inervación , Epidermis/inervación , Neuronas Aferentes/metabolismo , Receptor trkA/metabolismo , Receptor trkC/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Dermis/irrigación sanguínea , Dermis/citología , Dermis/metabolismo , Células Epidérmicas , Epidermis/metabolismo , Cara/inervación , Femenino , Genes Reporteros , Folículo Piloso/citología , Folículo Piloso/metabolismo , Masculino , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Células de Merkel/citología , Células de Merkel/metabolismo , Ratones , Ratones Mutantes , Ratones Transgénicos , Neuronas Aferentes/citología , Ingeniería de Proteínas/métodos , Isoformas de Proteínas , Receptor trkA/genética , Receptor trkC/genética , Células de Schwann/citología , Células de Schwann/metabolismo , Ganglio del Trigémino/crecimiento & desarrollo
16.
J Cell Biol ; 167(2): 257-67, 2004 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-15492043

RESUMEN

The Pit1-Oct1-Unc86 domain (POU domain) transcription factor Brn3a controls sensory neuron survival by regulating the expression of Trk receptors and members of the Bcl-2 family. Loss of Brn3a leads to a dramatic increase in apoptosis and severe loss of neurons in sensory ganglia. Although recent evidence suggests that Brn3a-mediated transcription can be modified by additional cofactors, the exact mechanisms are not known. Here, we report that homeodomain interacting protein kinase 2 (HIPK2) is a pro-apoptotic transcriptional cofactor that suppresses Brn3a-mediated gene expression. HIPK2 interacts with Brn3a, promotes Brn3a binding to DNA, but suppresses Brn3a-dependent transcription of brn3a, trkA, and bcl-xL. Overexpression of HIPK2 induces apoptosis in cultured sensory neurons. Conversely, targeted deletion of HIPK2 leads to increased expression of Brn3a, TrkA, and Bcl-xL, reduced apoptosis and increases in neuron numbers in the trigeminal ganglion. Together, these data indicate that HIPK2, through regulation of Brn3a-dependent gene expression, is a critical component in the transcriptional machinery that controls sensory neuron survival.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/fisiología , Factores de Transcripción/fisiología , Animales , Apoptosis , Western Blotting , Supervivencia Celular , ADN/metabolismo , ADN Complementario/metabolismo , Regulación hacia Abajo , Exones , Eliminación de Gen , Marcación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Luciferasas/metabolismo , Ratones , Modelos Biológicos , Modelos Genéticos , Mutación , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Receptor trkA/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factor de Transcripción Brn-3 , Factor de Transcripción Brn-3A , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba , Proteína bcl-X
17.
Neuron ; 40(3): 501-14, 2003 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-14642275

RESUMEN

Targeted deletion of focal adhesion kinase (fak) in the developing dorsal forebrain resulted in local disruptions of the cortical basement membrane located between the neuroepithelium and pia-meninges. At disruption sites, clusters of neurons invaded the marginal zone. Retraction of radial glial endfeet, midline fusion of brain hemispheres, and gliosis also occurred, similar to type II cobblestone lissencephaly as seen in congenital muscular dystrophy. Interestingly, targeted deletion of fak in neurons alone did not result in cortical ectopias, indicating that fak deletion from glia is required for neuronal mislocalization. Unexpectedly, fak deletion specifically from meningeal fibroblasts elicited similar cortical ectopias in vivo and altered laminin organization in vitro. These observations provide compelling evidence that FAK plays a key signaling role in cortical basement membrane assembly and/or remodeling. In addition, FAK is required within neurons during development because neuron-specific fak deletion alters dendritic morphology in the absence of lamination defects.


Asunto(s)
Membrana Basal/metabolismo , Corteza Cerebral/anomalías , Distrofias Musculares/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Proteínas Bacterianas/metabolismo , Membrana Basal/patología , Western Blotting , Calbindina 2 , Calbindinas , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/ultraestructura , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Duramadre , Distroglicanos , Embrión de Mamíferos , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Proteína Ácida Fibrilar de la Glía/metabolismo , Heterocigoto , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Infecciones , Péptidos y Proteínas de Señalización Intracelular , Laminas/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Distrofias Musculares/congénito , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , Proteínas del Tejido Nervioso , Neuronas/patología , Factores de Transcripción Otx , Fosfopiruvato Hidratasa/metabolismo , Fosfotirosina/metabolismo , Pruebas de Precipitina , Proteínas Tirosina Quinasas/deficiencia , Proteínas Tirosina Quinasas/genética , Proteína Reelina
18.
Proc Natl Acad Sci U S A ; 100(24): 14133-8, 2003 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-14617776

RESUMEN

Lung cancer is the leading cause of cancer death in the world, but the molecular mechanisms for its development have not been well characterized. The suppressors of cytokine signaling (SOCS) are inhibitors of cytokine signaling that function via the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. Eight SOCS proteins with similar structures have been identified so far. SOCS family members, however, have distinct mechanisms of inhibition of JAK/STAT signaling. Abnormalities of the JAK/STAT pathway are associated with cancer. Inhibition of signaling results in growth suppression in various cell types. Recently, the involvement of SOCS-1 in carcinogenesis has been reported. Here, we report identification of frequent hypermethylation in CpG islands of the functional SOCS-3 promoter that correlates with its transcription silencing in cell lines (lung cancer, breast cancer, and mesothelioma) and primary lung cancer tissue samples. Restoration of SOCS-3 in lung cancer cells where SOCS-3 was methylation-silenced resulted in the down-regulation of active STAT3, induction of apoptosis, and growth suppression. Our results suggest that methylation silencing of SOCS-3 is one of the important mechanisms of constitutive activation of the JAK/STAT pathway in cancer pathogenesis. The data also suggest that SOCS-3 therapy may be useful in the treatment of cancer.


Asunto(s)
Silenciador del Gen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas/genética , Proteínas Represoras , Factores de Transcripción , Apoptosis , Secuencia de Bases , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , División Celular , Línea Celular Tumoral , Metilación de ADN , ADN de Neoplasias/genética , Proteínas de Unión al ADN/fisiología , Humanos , Neoplasias Pulmonares/fisiopatología , Regiones Promotoras Genéticas , Proteínas/fisiología , Factor de Transcripción STAT3 , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas , Transactivadores/fisiología
19.
Nat Neurosci ; 6(7): 736-42, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12796784

RESUMEN

The melanocortin-4 receptor (MC4R) is critically involved in regulating energy balance, and obesity has been observed in mice with mutations in the gene for brain-derived neurotrophic factor (BDNF). Here we report that BDNF is expressed at high levels in the ventromedial hypothalamus (VMH) where its expression is regulated by nutritional state and by MC4R signaling. In addition, similar to MC4R mutants, mouse mutants that expresses the BDNF receptor TrkB at a quarter of the normal amount showed hyperphagia and excessive weight gain on higher-fat diets. Furthermore, BDNF infusion into the brain suppressed the hyperphagia and excessive weight gain observed on higher-fat diets in mice with deficient MC4R signaling. These results show that MC4R signaling controls BDNF expression in the VMH and support the hypothesis that BDNF is an important effector through which MC4R signaling controls energy balance.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Metabolismo Energético/fisiología , Hipotálamo Medio/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Receptores de Corticotropina/fisiología , alfa-MSH/análogos & derivados , Animales , Peso Corporal , Factor Neurotrófico Derivado del Encéfalo/genética , Ritmo Circadiano/fisiología , Conducta Alimentaria , Femenino , Masculino , Melaninas/genética , Melaninas/metabolismo , Ratones , Receptores de Corticotropina/genética , alfa-MSH/administración & dosificación
20.
Development ; 129(12): 2891-903, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12050137

RESUMEN

In order to assess the in vivo function of integrins containing the beta8 subunit, we have generated integrin beta8-deficient mice. Ablation of beta8 results in embryonic or perinatal lethality with profound defects in vascular development. Sixty-five percent of integrin beta8-deficient embryos die at midgestation, with evidence of insufficient vascularization of the placenta and yolk sac. The remaining 35% die shortly after birth with extensive intracerebral hemorrhage. Examination of brain tissue from integrin beta8-deficient embryos reveals abnormal vascular morphogenesis resulting in distended and leaky capillary vessels, as well as aberrant brain capillary patterning. In addition, endothelial cell hyperplasia is found in these mutant brains. Expression studies show that integrin beta8 transcripts are localized in endodermal cells surrounding endothelium in the yolk sac and in periventricular cells of the neuroepithelium in the brain. We propose that integrin beta8 is required for vascular morphogenesis by providing proper cues for capillary growth in both yolk sac and embryonic brain. This study thus identifies a molecule crucial for vascular patterning in embryonic yolk sac and brain.


Asunto(s)
Vasos Sanguíneos/embriología , Encéfalo/irrigación sanguínea , Encéfalo/embriología , Cadenas beta de Integrinas , Integrinas/metabolismo , Animales , Vasos Sanguíneos/anomalías , Endotelio Vascular/embriología , Endotelio Vascular/patología , Femenino , Muerte Fetal/genética , Hiperplasia/genética , Integrinas/genética , Masculino , Ratones , Ratones Mutantes , Neuronas/metabolismo , Placenta/metabolismo , Embarazo , Saco Vitelino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA