Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Res ; 84(7): 1165-1177, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315789

RESUMEN

Artificial intelligence (AI)-powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non-small cell lung cancer (NSCLC). An AI-based approach was used on hematoxylin and eosin (H&E) sections from 158 NSCLC specimens to accurately identify tumor cells, both adenocarcinoma and squamous carcinoma cells, and to generate a classifier of tumor cell spatial clustering. Consecutive tissue sections were stained with metal-labeled antibodies and processed through the IMC workflow, allowing quantitative detection of 24 markers related to tumor cells, tissue architecture, CD45+ myeloid and lymphoid cells, and immune activation. IMC identified 11 macrophage clusters that mainly localized in the stroma, except for S100A8+ cells, which infiltrated tumor nests. T cells were preferentially localized in peritumor areas or in tumor nests, the latter being associated with better prognosis, and they were more abundant in highly clustered tumors. Integrated tumor and immune classifiers were validated as prognostic on whole slides. In conclusion, integration of AI-powered H&E and multiparametric IMC allows investigation of spatial patterns and reveals tissue relevant features with clinical relevance. SIGNIFICANCE: Leveraging artificial intelligence-powered H&E analysis integrated with hi-plex imaging mass cytometry provides insights into the tumor ecosystem and can translate tumor features into classifiers to predict prognosis, genotype, and therapy response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Inteligencia Artificial , Ecosistema , Citometría de Imagen
2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338669

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. PDAC is characterized by a complex tumor microenvironment (TME), that plays a pivotal role in disease progression and resistance to therapy. Investigating the spatial distribution and interaction of TME cells with the tumor is the basis for understanding the mechanisms underlying disease progression and represents a current challenge in PDAC research. Imaging mass cytometry (IMC) is the major multiplex imaging technology for the spatial analysis of tumor heterogeneity. However, there is a dearth of reports of multiplexed IMC panels for different preclinical mouse models, including pancreatic cancer. We addressed this gap by utilizing two preclinical models of PDAC: the genetically engineered, bearing KRAS-TP53 mutations in pancreatic cells, and the orthotopic, and developed a 28-marker panel for single-cell IMC analysis to assess the abundance, distribution and phenotypes of cells involved in PDAC progression and their reciprocal functional interactions. Herein, we provide an unprecedented definition of the distribution of TME cells in PDAC and compare the diversity between transplanted and genetic disease models. The results obtained represent an important and customizable tool for unraveling the complexities of PDAC and deciphering the mechanisms behind therapy resistance.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Progresión de la Enfermedad , Citometría de Imagen , Microambiente Tumoral
3.
Pathogens ; 12(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764949

RESUMEN

The recognition of microbe and extracellular matrix (ECM) is a recurring theme in the humoral innate immune system. Fluid-phase molecules of innate immunity share regulatory roles in ECM. On the other hand, ECM elements have immunological functions. Innate immunity is evolutionary and functionally connected to hemostasis. Staphylococcus aureus (S. aureus) is a major cause of hospital-associated bloodstream infections and the most common cause of several life-threatening conditions such as endocarditis and sepsis through its ability to manipulate hemostasis. Biofilm-related infection and sepsis represent a medical need due to the lack of treatments and the high resistance to antibiotics. We designed a method combining imaging and microfluidics to dissect the role of elements of the ECM and hemostasis in triggering S. aureus biofilm by highlighting an essential role of fibrinogen (FG) in adhesion and formation. Furthermore, we ascertained an important role of the fluid-phase activation of fibrinolysis in inhibiting biofilm of S. aureus and facilitating an antibody-mediated response aimed at pathogen killing. The results define FG as an essential element of hemostasis in the S. aureus biofilm formation and a role of fibrinolysis in its inhibition, while promoting an antibody-mediated response. Understanding host molecular mechanisms influencing biofilm formation and degradation is instrumental for the development of new combined therapeutic approaches to prevent the risk of S. aureus biofilm-associated diseases.

4.
Sci Rep ; 12(1): 8506, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595846

RESUMEN

Thanks to its well-known neuroanatomy, limited brain size, complex behaviour, and the extensive genetic methods, Drosophila has become an indispensable model in neuroscience. A vast number of studies have focused on its olfactory system and the processing of odour information. Optogenetics is one of the recently developed genetic tools that significantly advance this field of research, allowing to replace odour stimuli by direct neuronal activation with light. This becomes a universal all-optical toolkit when spatially selective optogenetic activation is combined with calcium imaging to read out neuronal responses. Initial experiments showed a successful implementation to study the olfactory system in fish and mice, but the olfactory system of Drosophila has been so far precluded from an application. To fill this gap, we present here optogenetic tools to selectively stimulate functional units in the Drosophila olfactory system, combined with two-photon calcium imaging to read out the activity patterns elicited by these stimuli at different levels of the brain. This method allows to study the spatial and temporal features of the information flow and reveals the functional connectivity in the olfactory network.


Asunto(s)
Calcio , Drosophila , Animales , Ratones , Odorantes , Optogenética/métodos , Olfato/fisiología
5.
J Insect Physiol ; 125: 104088, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32652080

RESUMEN

Drosophila suzukii is an invasive pest that prefers to lay eggs in ripening fruits, whereas most closely related Drosophila species exclusively use rotten fruit as oviposition site. This behaviour is allowed by an enlarged and serrated ovipositor that can pierce intact fruit skin, and by multiple contact sensory systems (mechanosensation and taste) that detect the optimal egg-laying substrates. Here, we tested the hypothesis that bristles present in the D. suzukii ovipositor tip contribute to these sensory modalities. Analysis of the bristle ultrastructure revealed that four different types of cuticular elements (conical pegs type 1 and 2, chaetic and trichoid sensilla) are present on the tip of each ovipositor plate. All of them have a poreless shaft and are innervated at their base by a single neuron that ends in a distal tubular body, thus resembling mechanosensitive structures. Fluorescent labelling in D. suzukii and D. melanogaster revealed that pegs located on the ventral side of the ovipositor tip are innervated by a single neuron in both species. RNA-sequencing profiled gene expression, notably sensory receptor genes of the terminalia of D. suzukii and of three other Drosophila species with changes in their ovipositor structure (from serrated to blunt ovipositor: Drosophila subpulchrella, Drosophila biarmipes and D. melanogaster). Our results revealed few species-specific transcripts and an overlapping expression of candidate mechanosensitive genes as well as the presence of some chemoreceptor transcripts. These experimental evidences suggest a mechanosensitive function for the D. suzukii ovipositor, which might be crucial across Drosophila species independently from ovipositor shape.


Asunto(s)
Drosophila/fisiología , Mecanotransducción Celular/genética , Oviposición/fisiología , Animales , Drosophila/genética , Drosophila/ultraestructura , Femenino , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oviposición/genética , Sensilos , Especificidad de la Especie , Percepción del Gusto
6.
Curr Biol ; 29(22): 3928-3936.e3, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679928

RESUMEN

Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Drosophilidae/fisiología , Adaptación Fisiológica/fisiología , Altitud , Animales , Relojes Circadianos/fisiología , Criptocromos/fisiología , Oscuridad , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Drosophilidae/genética , Locomoción/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Fenotipo , Fotoperiodo
7.
Curr Biol ; 29(17): 2961-2969.e4, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31447373

RESUMEN

Rhodopsins, the major light-detecting molecules of animal visual systems [1], consist of opsin apoproteins that covalently bind a retinal chromophore with a conserved lysine residue [1, 2]. In addition to capturing photons, this chromophore contributes to rhodopsin maturation [3, 4], trafficking [3, 4], and stabilization [5], and defects in chromophore synthesis and recycling can cause dysfunction of the retina and dystrophy [6-9]. Indications that opsin apoproteins alone might have biological roles have come from archaebacteria and platyhelminths, which present opsin-like proteins that lack the chromophore binding site and are deemed to function independently of light [10, 11]. Light-independent sensory roles have been documented for Drosophila opsins [12-15], yet also these unconventional opsin functions are thought to require chromophore binding [12, 13, 15]. Unconjugated opsin apoproteins act as phospholipid scramblases in mammalian photoreceptor disks [16], yet chromophore-independent roles of opsin apoproteins outside of eyes have, to the best of our knowledge, hitherto not been described. Drosophila chordotonal mechanoreceptors require opsins [13, 15], and we find that their function remains uncompromised by nutrient carotenoid depletion. Disrupting carotenoid uptake and cleavage also left the mechanoreceptors unaffected, and manipulating the chromophore attachment site of the fly's major visual opsin Rh1 impaired photoreceptor, but not mechanoreceptor, function. Notwithstanding this chromophore independence, some proteins that process and recycle the chromophore in the retina are also required in mechanoreceptors, including visual cycle components that recycle the chromophore upon its photoisomerization. Our results thus establish biological function for unconjugated opsin apoproteins outside of eyes and, in addition, document chromophore-independent roles for chromophore pathway components.


Asunto(s)
Apoproteínas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Mecanorreceptores/metabolismo , Opsinas/metabolismo , Retinaldehído/análogos & derivados , Animales , Retinaldehído/metabolismo
8.
J Neurosci ; 38(43): 9240-9251, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30201774

RESUMEN

Odorants are coded in the primary olfactory processing centers by spatially and temporally distributed patterns of glomerular activity. Whereas the spatial distribution of odorant-induced responses is known to be conserved across individuals, the universality of its temporal structure is still debated. Via fast two-photon calcium imaging, we analyzed the early phase of neuronal responses in the form of the activity onset latencies in the antennal lobe projection neurons of honeybee foragers. We show that each odorant evokes a stimulus-specific response latency pattern across the glomerular coding space. Moreover, we investigate these early response features for the first time across animals, revealing that the order of glomerular firing onsets is conserved across individuals and allows them to reliably predict odorant identity, but not concentration. These results suggest that the neuronal response latencies provide the first available code for fast odor identification.SIGNIFICANCE STATEMENT Here, we studied early temporal coding in the primary olfactory processing centers of the honeybee brain by fast imaging of glomerular responses to different odorants across glomeruli and across individuals. Regarding the elusive role of rapid response dynamics in olfactory coding, we were able to clarify the following aspects: (1) the rank of glomerular activation is conserved across individuals, (2) its stimulus prediction accuracy is equal to that of the response amplitude code, and (3) it contains complementary information. Our findings suggest a substantial role of response latencies in odor identification, anticipating the static response amplitude code.


Asunto(s)
Odorantes , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Tiempo de Reacción/fisiología , Olfato/fisiología , Animales , Abejas , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Vías Olfatorias/química , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Olfato/efectos de los fármacos
9.
Neuron ; 98(1): 67-74.e4, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29551493

RESUMEN

Animals rely on mechanosensory feedback from proprioceptors to control locomotory body movements. Unexpectedly, we found that this movement control requires visual opsins. Disrupting the Drosophila opsins NINAE or Rh6 impaired larval locomotion and body contractions, independently of light and vision. Opsins were detected in chordotonal proprioceptors along the larval body, localizing to their ciliated dendrites. Loss of opsins impaired mechanically evoked proprioceptor spiking and cilium ultrastructure. Without NINAE or Rh6, NOMPC mechanotransduction channels leaked from proprioceptor cilia and ciliary Inactive (Iav) channels partly disappeared. Locomotion is shown to require opsins in proprioceptors, and the receptors are found to express the opsin gene Rh7, in addition to ninaE and Rh6. Besides implicating opsins in movement control, this documents roles of non-ciliary, rhabdomeric opsins in cilium organization, providing a model for a key transition in opsin evolution and suggesting that structural roles of rhabdomeric opsins preceded their use for light detection.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Larva/metabolismo , Locomoción/fisiología , Propiocepción/fisiología , Rodopsina/biosíntesis , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/análisis , Drosophila melanogaster , Femenino , Larva/química , Masculino , Mecanotransducción Celular/fisiología , Rodopsina/análisis
10.
Proc Natl Acad Sci U S A ; 113(26): 7243-8, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298354

RESUMEN

Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Locomoción/genética , Proteínas de la Membrana/fisiología , Animales , Animales Modificados Genéticamente , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Larva/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Neuronas/metabolismo
11.
Handb Exp Pharmacol ; 223: 899-916, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24961973

RESUMEN

Hearing is a particularly sensitive form of mechanosensation that relies on dedicated ion channels transducing sound-induced vibrations that hardly exceed Brownian motion. Attempts to molecularly identify these auditory transduction channels have put the focus on TRPs in ears. In Drosophila, hearing has been shown to involve TRPA, TRPC, TRPN, and TRPV subfamily members, with candidate auditory transduction channels including NOMPC (=TRPN1) and the TRPVs Nan and Iav. In vertebrates, TRPs are unlikely to form auditory transduction channels, yet most TRPs are expressed in inner ear tissues, and mutations in TRPN1, TRPVA1, TRPML3, TRPV4, and TRPC3/TRPC6 have been implicated in inner ear function. Starting with a brief introduction of fly and vertebrate auditory anatomies and transduction mechanisms, this review summarizes our current understanding of the auditory roles of TRPs.


Asunto(s)
Audición/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Drosophila/fisiología , Humanos
12.
Behav Brain Res ; 252: 450-7, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792025

RESUMEN

Autism spectrum disorders (ASDs) are characterized by deficits in social interactions, language development and repetitive behaviours. Multiple genes involved in the formation, specification and maintenance of synapses have been identified as risk factors for ASDs development. Among these are the neuroligin genes which code for postsynaptic cell adhesion molecules that induce the formation of presynapses, promote their maturation and modulate synaptic functions in both vertebrates and invertebrates. Neuroligin-deficient mice display abnormal social and vocal behaviours that resemble ASDs symptoms. Here we show for the fly Drosophila melanogaster that deletion of the dnl2 gene, coding for one of four Neuroligin isoforms, impairs social interactions, alters acoustic communication signals, and affects the transition between different behaviours. dnl2-Deficient flies maintain larger distances to conspecifics and males perform less female-directed courtship and male-directed aggressive behaviours while the patterns of these behaviours and general locomotor activity were not different from wild type controls. Since tests for olfactory, visual and auditory perception revealed no sensory impairments of dnl2-deficient mutants, reduced social interactions seem to result from altered excitability in central nervous neuropils that initiate social behaviours. Our results demonstrate that Neuroligins are phylogenetically conserved not only regarding their structure and direct function at the synapse but also concerning a shared implication in the regulation of social behaviours that dates back to common ancestors of humans and flies. In addition to previously described mouse models, Drosophila can thus be used to study the contribution of Neuroligins to synaptic function, social interactions and their implication in ASDs.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas del Tejido Nervioso/genética , Trastorno de la Conducta Social/genética , Agresión/fisiología , Comunicación Animal , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/deficiencia , Relojes Circadianos/genética , Cortejo , Modelos Animales de Enfermedad , Drosophila melanogaster , Electrorretinografía , Audición/genética , Locomoción/genética , Masculino , Proteínas del Tejido Nervioso/deficiencia , Conducta Sexual Animal/fisiología
13.
J Cell Sci ; 126(Pt 14): 3134-40, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23687382

RESUMEN

The SNARE proteins VAMP/synaptobrevin, SNAP-25 and syntaxin are core components of the apparatus that mediates neurotransmitter release. They form a heterotrimeric complex, and an undetermined number of SNARE complexes assemble to form a super-complex. Here, we present a radial model of this nanomachine. Experiments performed with botulinum neurotoxins led to the identification of one arginine residue in SNAP-25 and one aspartate residue in syntaxin (R206 and D253 in Drosophila melanogaster). These residues are highly conserved and predicted to play a major role in the protein-protein interactions between SNARE complexes by forming an ionic couple. Accordingly, we generated transgenic Drosophila lines expressing SNAREs mutated in these residues and performed an electrophysiological analysis of their neuromuscular junctions. Our results indicate that SNAP-25-R206 and syntaxin-D253 play a major role in neuroexocytosis and support a radial assembly of several SNARE complexes interacting via the ionic couple formed by these two residues.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Canales Iónicos/metabolismo , Unión Neuromuscular/fisiología , Proteínas Qa-SNARE/metabolismo , Transmisión Sináptica , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Animales Modificados Genéticamente , Toxinas Botulínicas/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Ingeniería Genética , Larva , Modelos Químicos , Mutación/genética , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Proteínas Qa-SNARE/genética , Estereoisomerismo , Proteína 25 Asociada a Sinaptosomas/genética
14.
Curr Biol ; 23(9): R349-51, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23660354

RESUMEN

Two new studies show that the Drosophila transient receptor potential (TRP) family member NOMPC forms both a mechanically gated ion channel and a fine filament that, by tethering the protein to microtubules, might act as a gating spring.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Mecanotransducción Celular/fisiología , Subunidades de Proteína/metabolismo , Tacto/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Proteínas de Drosophila/genética , Canales de Potencial de Receptor Transitorio/genética
15.
J Cell Sci ; 123(Pt 19): 3276-83, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20826463

RESUMEN

An analysis of SNAP-25 isoform sequences indicates that there is a highly conserved arginine residue (198 in vertebrates, 206 in the genus Drosophila) within the C-terminal region, which is cleaved by botulinum neurotoxin A, with consequent blockade of neuroexocytosis. The possibility that it may play an important role in the function of the neuroexocytosis machinery was tested at neuromuscular junctions of Drosophila melanogaster larvae expressing SNAP-25 in which Arg206 had been replaced by alanine. Electrophysiological recordings of spontaneous and evoked neurotransmitter release under different conditions as well as testing for the assembly of the SNARE complex indicate that this residue, which is at the P(1)' position of the botulinum neurotoxin A cleavage site, plays an essential role in neuroexocytosis. Computer graphic modelling suggests that this arginine residue mediates protein-protein contacts within a rosette of SNARE complexes that assembles to mediate the fusion of synaptic vesicles with the presynaptic plasma membrane.


Asunto(s)
Encéfalo/metabolismo , Drosophila melanogaster/fisiología , Proteínas Mutantes/metabolismo , Unión Neuromuscular/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Animales Modificados Genéticamente , Arginina/genética , Encéfalo/patología , Señalización del Calcio , Células Cultivadas , Clonación Molecular , Electrofisiología , Potenciales Evocados/genética , Exocitosis/genética , Larva , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Unión Neuromuscular/genética , Transmisión Sináptica/genética , Proteína 25 Asociada a Sinaptosomas/genética
16.
Hum Mol Genet ; 19(6): 987-1000, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20026556

RESUMEN

Human Wolf-Hirschhorn syndrome (WHS) is a multigenic disorder resulting from a hemizygous deletion on chromosome 4. LETM1 is the best candidate gene for seizures, the strongest haploinsufficiency phenotype of WHS patients. Here, we identify the Drosophila gene CG4589 as the ortholog of LETM1 and name the gene DmLETM1. Using RNA interference approaches in both Drosophila melanogaster cultured cells and the adult fly, we have assayed the effects of down-regulating the LETM1 gene on mitochondrial function. We also show that DmLETM1 complements growth and mitochondrial K(+)/H(+) exchange (KHE) activity in yeast deficient for LETM1. Genetic studies allowing the conditional inactivation of LETM1 function in specific tissues demonstrate that the depletion of DmLETM1 results in roughening of the adult eye, mitochondrial swelling and developmental lethality in third-instar larvae, possibly the result of deregulated mitophagy. Neuronal specific down-regulation of DmLETM1 results in impairment of locomotor behavior in the fly and reduced synaptic neurotransmitter release. Taken together our results demonstrate the function of DmLETM1 as a mitochondrial osmoregulator through its KHE activity and uncover a pathophysiological WHS phenotype in the model organism D. melanogaster.


Asunto(s)
Antiportadores/genética , Proteínas de Unión al Calcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutación/genética , Convulsiones/complicaciones , Convulsiones/genética , Síndrome de Wolf-Hirschhorn/complicaciones , Síndrome de Wolf-Hirschhorn/genética , Secuencia de Aminoácidos , Animales , Antiportadores/química , Antiportadores/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Ojo/patología , Ojo/ultraestructura , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Actividad Motora/fisiología , Sistema Nervioso/patología , Sistema Nervioso/fisiopatología , Sistema Nervioso/ultraestructura , Neurotransmisores/metabolismo , Especificidad de Órganos , Interferencia de ARN , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Sinapsis/metabolismo , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA