Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38894250

RESUMEN

Material Extrusion (MEX) currently stands as the most widespread Additive Manufacturing (AM) process, but part quality deficiencies remain a barrier to its generalized industrial adoption. Quality control in MEX is a complex task as extrusion performance impacts the consistency of mechanical properties and the surface finish, dimensional accuracy, and geometric precision of manufactured parts. Recognizing the need for early-stage process monitoring, this study explores the potential of integrating Laser Triangulation Sensors (LTS) into MEX/P manufacturing equipment for layer-wise 3D inspections. Using a double-bridge architecture, an LTS-based sub-micrometric inspection system operates independently from the manufacturing process, enabling comprehensive digitization and autonomous reconstruction of the target layer's topography. Surface texture is then computed using standardized indicators and a new approach that provides insight into layer quality uniformity. A case study evaluating two alternative extruder head designs demonstrates the efficacy of this integrated approach for layer quality characterization. Implementing a generalized layer-wise procedure based on this integration can significantly mitigate quality issues in MEX manufacturing and optimize process parameter configurations for enhanced performance.

2.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38676027

RESUMEN

The variety of equipment implementing laser triangulation technology for 3D scanning makes it difficult to analyse their performance, comparability, and traceability. In this study, three laser triangulation sensors arranged in different configurations are analysed using high precision spheres made of different materials and surface finishes. Three types of reference parameters were used: diameter, form error, and standard deviation of the point cloud. The experimentation was based on studying the quality of the point clouds generated by the three sensors, which enabled us to find and quantify an edge effect in the horizon of the scanned surface. A procedure to reach the optimal filtering conditions was proposed, and a chart of recommended usage of each sphere (material and finish) was created for the different types of sensors. This filter enables removal of both spurious points and those few points that spoil the form error, greatly improving the quality of the measurement.

3.
Materials (Basel) ; 16(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570147

RESUMEN

Traditionally, 3D digitizing sensors have been based on contact measurement. Given the disadvantages of this type of measurement, non-contact sensors such as structured light sensors have gained the attention of many sectors in recent years. The fact that their metrological performance is affected by the optical properties of the digitized material, together with the lack of standards, makes it necessary to develop characterization work to validate materials and calibration artifacts for the qualification and calibration of these sensors. This work compares and optically characterizes different materials and surface finishes of reference spheres used in the calibration of two structured light sensors with different fields of application, with the aim to determine the most suitable sphere material-sensor combination in each case. The contact measurement system of a CMM is used as a reference and, for the processing of the information from the sensors, the application of two different filters is analyzed. The results achieved point to sandblasted stainless steel spheres as the best choice for calibrating or qualifying these sensors, as well as for use as registration targets in digitizing. Tungsten carbide spheres and zirconium are unsuitable for this purpose.

4.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177232

RESUMEN

The great geometric complexity that additive manufacturing allows in parts, together with the possibility of combining several materials in the same part, establishes a new design and manufacturing paradigm. Despite the interest of many leading sectors, the lack of standardization still makes it necessary to carry out characterization work to enjoy these advantages in functional parts. In many of these techniques, the process does not end with the end of the machine cycle, but different post-processing must be carried out to consider the part finished. It has been found that the type of post process applied can have a similar effect on part quality as other further studied process parameters. In this work, the material projection technique was used to manufacture multi-material parts combining resins with different mechanical properties. The influence of different post-processing on the tensile behavior of these parts was analyzed. The results show the detrimental effect of ultrasonic treatment with isopropyl alcohol in the case of the more flexible resin mixtures, being advisable to use ultrasonic with mineral oil or furnace treatment. For more rigid mixtures, the furnace is the best option, although the other post-processing techniques do not significantly deteriorate their performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA