RESUMEN
BACKGROUND: High rates of vaccination and natural infection drive immunity and redirect selective viral adaptation. Updated boosters are installed to cope with drifted viruses, yet data on adaptive evolution under increasing immune pressure in a real-world situation are lacking. METHODS: Cross-sectional study to characterise SARS-CoV-2 mutational dynamics and selective adaptation over >1 year in relation to vaccine status, viral phylogenetics, and associated clinical and demographic variables. FINDINGS: The study of >5400 SARS-CoV-2 infections between July 2021 and August 2022 in metropolitan New York portrayed the evolutionary transition from Delta to Omicron BA.1-BA.5 variants. Booster vaccinations were implemented during the Delta wave, yet booster breakthrough infections and SARS-CoV-2 re-infections were almost exclusive to Omicron. In adjusted logistic regression analyses, BA.1, BA.2, and BA.5 had a significant growth advantage over co-occurring lineages in the boosted population, unlike BA.2.12.1 or BA.4. Selection pressure by booster shots translated into diffuse adaptive evolution in Delta spike, contrasting with strong, receptor-binding motif-focused adaptive evolution in BA.2-BA.5 spike (Fisher Exact tests; non-synonymous/synonymous mutation rates per site). Convergent evolution has become common in Omicron, engaging spike positions crucial for immune escape, receptor binding, or cleavage. INTERPRETATION: Booster shots are required to cope with gaps in immunity. Their discriminative immune pressure contributes to their effectiveness but also requires monitoring of selective viral adaptation processes. Omicron BA.2 and BA.5 had a selective advantage under booster vaccination pressure, contributing to the evolution of BA.2 and BA.5 sublineages and recombinant forms that predominate in 2023. FUNDING: The study was supported by NYU institutional funds and partly by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.
Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Transversales , Infección Irruptiva , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
BACKGROUND: Developing genomic resources for a diverse range of species is an important step towards understanding the mechanisms underlying complex traits. Specifically, organisms that exhibit unique and accessible phenotypes-of-interest allow researchers to address questions that may be ill-suited to traditional model organisms. We sequenced the genome and transcriptome of Alston's singing mouse (Scotinomys teguina), an emerging model for social cognition and vocal communication. In addition to producing advertisement songs used for mate attraction and male-male competition, these rodents are diurnal, live at high-altitudes, and are obligate insectivores, providing opportunities to explore diverse physiological, ecological, and evolutionary questions. RESULTS: Using PromethION, Illumina, and PacBio sequencing, we produced an annotated genome and transcriptome, which were validated using gene expression and functional enrichment analyses. To assess the usefulness of our assemblies, we performed single nuclei sequencing on cells of the orofacial motor cortex, a brain region implicated in song coordination, identifying 12 cell types. CONCLUSIONS: These resources will provide the opportunity to identify the molecular basis of complex traits in singing mice as well as to contribute data that can be used for large-scale comparative analyses.
Asunto(s)
Evolución Biológica , Genómica , Masculino , Animales , Ratones , Herencia Multifactorial , Fenotipo , ReproducciónRESUMEN
Since the latter part of 2020, SARS-CoV-2 evolution has been characterised by the emergence of viral variants associated with distinct biological characteristics. While the main research focus has centred on the ability of new variants to increase in frequency and impact the effective reproductive number of the virus, less attention has been placed on their relative ability to establish transmission chains and to spread through a geographic area. Here, we describe a phylogeographic approach to estimate and compare the introduction and dispersal dynamics of the main SARS-CoV-2 variants - Alpha, Iota, Delta, and Omicron - that circulated in the New York City area between 2020 and 2022. Notably, our results indicate that Delta had a lower ability to establish sustained transmission chains in the NYC area and that Omicron (BA.1) was the variant fastest to disseminate across the study area. The analytical approach presented here complements non-spatially-explicit analytical approaches that seek a better understanding of the epidemiological differences that exist among successive SARS-CoV-2 variants of concern.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/virología , Ciudad de Nueva York/epidemiología , SARS-CoV-2/genéticaRESUMEN
The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.
RESUMEN
BACKGROUND: In 2021, Delta became the predominant SARS-CoV-2 variant worldwide. While vaccines have effectively prevented COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occurred. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contributed to increased rates of breakthrough infections compared to unvaccinated controls. METHODS: We studied SARS-CoV-2 variant distribution, dynamics, and adaptive selection over time in relation to vaccine status, phylogenetic relatedness of viruses, full genome mutation profiles, and associated clinical and demographic parameters. FINDINGS: We show a steep and near-complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25 (14% in vaccinated, 7% in unvaccinated), its spike mutation S112L, and AY.44 (8% in vaccinated, 2% in unvaccinated) with its nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthrough infections increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. INTERPRETATION: We observed a modest adaptation of Delta genomes in breakthrough infections in New York, suggesting an improved genomic framework to support Delta's epidemic growth in times of waning vaccine protection despite limited impact on vaccine escape. FUNDING: The study was supported by NYU institutional funds. The NYULH Genome Technology Center is partially supported by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/genética , Genómica , Humanos , New York/epidemiología , Filogenia , SARS-CoV-2/genéticaRESUMEN
Background: The emergence of recombinant viruses is a threat to public health. Recombination of viral variants may combine variant-specific features that together catalyze viral escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. Methods: Multi-method amplicon and metagenomic sequencing of a clinical swab and the in vitro grown virus allowed for high-confidence detection of a novel recombinant variant. Mutational, phylogeographic, and structural analyses determined features of the recombinant genome and spike protein. Neutralization assays using infectious as well as pseudotyped viruses and point mutants thereof defined the recombinant's sensitivity to a panel of monoclonal antibodies and sera from vaccinated and/or convalescent individuals. Results: A novel Delta-Omicron SARS-CoV-2 recombinant was identified in an unvaccinated, immunosuppressed kidney transplant recipient treated with monoclonal antibody Sotrovimab. The recombination breakpoint is located in the spike N-terminal domain, adjacent to the Sotrovimab quaternary binding site, and results in a 5'-Delta AY.45 and a 3'-Omicron BA.1 mosaic spike protein. Delta and BA.1 are sensitive to Sotrovimab neutralization, whereas the Delta-Omicron recombinant is highly resistant to Sotrovimab, both with and without the RBD resistance mutation E340D. Conclusions: Recombination between circulating SARS-CoV-2 variants can functionally contribute to immune escape. It is critical to validate phenotypes of mosaic viruses and monitor immunosuppressed COVID-19 patients treated with monoclonal antibodies for the selection of recombinant and immune escape variants. (Funded by NYU, the National Institutes of Health, and others).
RESUMEN
Of 379 severe acute respiratory syndrome coronavirus 2 samples collected in New York, USA, we detected 86 Omicron variant sequences containing Delta variant mutation P681R. Probable explanations were co-infection with 2 viruses or contamination/amplification artifact. Repeated library preparation with fewer cycles showed the P681R calls were artifactual. Unusual mutations should be interpreted with caution.
Asunto(s)
COVID-19 , SARS-CoV-2 , Artefactos , Humanos , Mutación , New York/epidemiología , SARS-CoV-2/genéticaRESUMEN
In 2021, Delta has become the predominant SARS-CoV-2 variant worldwide. While vaccines effectively prevent COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occur. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contribute to increased rates of breakthrough infections compared to unvaccinated controls. Here, we show a steep and near complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25, its spike mutation S112L, and nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthroughs increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. Our data indicate a limited impact of vaccine escape in favor of Delta's increased epidemic growth in times of waning vaccine protection.
RESUMEN
The efficacy of COVID-19 mRNA vaccines is high, but breakthrough infections still occur. We compared the SARS-CoV-2 genomes of 76 breakthrough cases after full vaccination with BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), or JNJ-78436735 (Janssen) to unvaccinated controls (February-April 2021) in metropolitan New York, including their phylogenetic relationship, distribution of variants, and full spike mutation profiles. The median age of patients in the study was 48 years; 7 required hospitalization and 1 died. Most breakthrough infections (57/76) occurred with B.1.1.7 (Alpha) or B.1.526 (Iota). Among the 7 hospitalized cases, 4 were infected with B.1.1.7, including 1 death. Both unmatched and matched statistical analyses considering age, sex, vaccine type, and study month as covariates supported the null hypothesis of equal variant distributions between vaccinated and unvaccinated in χ2 and McNemar tests (P > 0.1), highlighting a high vaccine efficacy against B.1.1.7 and B.1.526. There was no clear association among breakthroughs between type of vaccine received and variant. In the vaccinated group, spike mutations in the N-terminal domain and receptor-binding domain that have been associated with immune evasion were overrepresented. The evolving dynamic of SARS-CoV-2 variants requires broad genomic analyses of breakthrough infections to provide real-life information on immune escape mediated by circulating variants and their spike mutations.
Asunto(s)
COVID-19/genética , COVID-19/inmunología , Evolución Molecular , Evasión Inmune/genética , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacuna nCoV-2019 mRNA-1273 , Ad26COVS1 , Adulto , Anciano , Anciano de 80 o más Años , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Dominios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
Substantial progress has been made in understanding how tumors escape immune surveillance. However, few measures to counteract tumor immune evasion have been developed. Suppression of tumor antigen expression is a common adaptive mechanism that cancers use to evade detection and destruction by the immune system. Epigenetic modifications play a critical role in various aspects of immune invasion, including the regulation of tumor antigen expression. To identify epigenetic regulators of tumor antigen expression, we established a transplantable syngeneic tumor model of immune escape with silenced antigen expression and used this system as a platform for a CRISPR-Cas9 suppressor screen for genes encoding epigenetic modifiers. We found that disruption of the genes encoding either of the chromatin modifiers activating transcription factor 7-interacting protein (Atf7ip) or its interacting partner SET domain bifurcated histone lysine methyltransferase 1 (Setdb1) in tumor cells restored tumor antigen expression. This resulted in augmented tumor immunogenicity concomitant with elevated endogenous retroviral (ERV) antigens and mRNA intron retention. ERV disinhibition was associated with a robust type I interferon response and increased T-cell infiltration, leading to rejection of cells lacking intact Atf7ip or Setdb1. ATF7IP or SETDB1 expression inversely correlated with antigen processing and presentation pathways, interferon signaling, and T-cell infiltration and cytotoxicity in human cancers. Our results provide a rationale for targeting Atf7ip or Setdb1 in cancer immunotherapy.
Asunto(s)
Antígenos de Neoplasias/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias/genética , Proteínas Represoras/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Humanos , Ratones , Ratones DesnudosRESUMEN
During the first phase of the COVID-19 epidemic, New York City rapidly became the epicenter of the pandemic in the United States. While molecular phylogenetic analyses have previously highlighted multiple introductions and a period of cryptic community transmission within New York City, little is known about the circulation of SARS-CoV-2 within and among its boroughs. We here perform phylogeographic investigations to gain insights into the circulation of viral lineages during the first months of the New York City outbreak. Our analyses describe the dispersal dynamics of viral lineages at the state and city levels, illustrating that peripheral samples likely correspond to distinct dispersal events originating from the main metropolitan city areas. In line with the high prevalence recorded in this area, our results highlight the relatively important role of the borough of Queens as a transmission hub associated with higher local circulation and dispersal of viral lineages toward the surrounding boroughs.
Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , SARS-CoV-2/genética , Genoma Viral/genética , Humanos , Ciudad de Nueva York/epidemiología , Filogenia , Filogeografía , Prevalencia , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificaciónRESUMEN
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
Asunto(s)
COVID-19/complicaciones , Mutación , SARS-CoV-2/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/virología , Brotes de Enfermedades , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Uruguay/epidemiología , Adulto JovenRESUMEN
Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.
Asunto(s)
COVID-19 , Genoma Viral , Pandemias , Filogenia , SARS-CoV-2/genética , Secuenciación Completa del Genoma , COVID-19/epidemiología , COVID-19/genética , COVID-19/transmisión , Femenino , Humanos , Masculino , Ciudad de Nueva YorkRESUMEN
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
RESUMEN
Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.
RESUMEN
INTRODUCTION: In Cameroon, a manifold diversity of HIV strains exists with CRF02_AG and unique recombinant forms (URFs) being the predominant strains. In recent years, a steady increase in URFs and clade F2 viruses has been monitored through partial genome sequencing. There is an information gap in the characterization of emerging URFs along the full genome, which is needed to address the challenges URFs pose towards diagnosis, treatment and HIV-1 vaccine design. METHOD: Eighteen Cameroonian URFs from samples collected between the years 2000 and 2015 were studied using a newly developed near full genome sequencing (NFGS) protocol based on variable nested RT-PCRs with a versatile primer set. Near full genomes were characterized for recombination patterns and sequence signatures with possible impact on antiretroviral treatment or Env-directed immune responses. Third-generation sequencing (3GS) of near full or half genomes (HGs) gave insight into intra-patient URF diversity. RESULTS: The characterized URFs were composed of a broad variety of subtypes and recombinants including A, F, G, CRF01_AE, CRF02_AG and CRF22_01A1. Phylogenetic analysis unveiled dominant CRF02_AG and F2 recombination patterns. 3GS indicated a high intra-patient URF diversity with up to four distinct viral sub-populations present in plasma at the same time. URF pol genomic analysis revealed a number of accessory drug resistance mutations (DRMs) in the ART-naïve participants. Genotypic env analysis suggests CCR5 usage in 14/18 samples and identified deviations at residues, critical for gp120/gp41 interphase and CD4 binding site broadly neutralizing antibodies in more than half of the studied URFs. V1V2 sites of immune pressure in the human RV144 vaccine study varied in more than a third of URFs. CONCLUSIONS: This study identified novel mosaic patterns in URFs in Cameroon. In line with the regional predominance of CRF_02AG and the increased prevalence of clade F2, prominent CRF_02AG and F2 background patterns were observed underlying the URFs. In the context of the novel mosaic genomes, the impact of the identified accessory DRMs and Env epitope variations on treatment and immune control remains elusive. The evolving diversity of HIV-1 URFs in Cameroon requires continuous monitoring to respond to the increasing challenges for diagnosis, antiretroviral treatment and prevention.
Asunto(s)
Infecciones por VIH/epidemiología , Infecciones por VIH/virología , Seropositividad para VIH , VIH-1/genética , Virus Reordenados/genética , Fármacos Anti-VIH/uso terapéutico , Camerún/epidemiología , Femenino , Genoma Viral , Infecciones por VIH/tratamiento farmacológico , Humanos , Estudios Longitudinales , Mutación , Filogenia , Reacción en Cadena de la PolimerasaRESUMEN
Near full genome sequencing (NFGS) of HIV-1 is required to assess the genetic composition of HIV-1 strains comprehensively. Population-wide, it enables a determination of the heterogeneity of HIV-1 and the emergence of novel/recombinant strains, while for each individual it constitutes a diagnostic instrument to assist targeted therapeutic measures against viral components. There is still a lack of robust and adaptable techniques for efficient NFGS from miscellaneous HIV-1 subtypes. Using rational primer design, a broad primer set was developed for the amplification and sequencing of diverse HIV-1 group M variants from plasma. Using pure subtypes as well as diverse, unique recombinant forms (URF), variable amplicon approaches were developed for NFGS comprising all functional genes. Twenty-three different genomes composed of subtypes A (A1), B, F (F2), G, CRF01_AE, CRF02_AG, and CRF22_01A1 were successfully determined. The NFGS approach was robust irrespective of viral loads (≥306 copies/mL) and amplification method. Third-generation sequencing (TGS), single genome amplification (SGA), cloning, and bulk sequencing yielded similar outcomes concerning subtype composition and recombinant breakpoint patterns. The introduction of a simple and versatile near full genome amplification, sequencing, and cloning method enables broad application in phylogenetic studies of diverse HIV-1 subtypes and can contribute to personalized HIV therapy and diagnosis.
Asunto(s)
VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Secuenciación Completa del Genoma/métodos , Clonación Molecular/métodos , Cartilla de ADN/genética , Genotipo , Infecciones por VIH/virología , VIH-1/clasificación , Humanos , Plasma/virologíaRESUMEN
Here, we report the draft genome of Streptococcus halitosis sp. nov. strain VT-4, a novel bacterium isolated from the dorsal part of the tongue of a patient with halitosis. The genome comprised 1,880,608 bp with a GC content of 41.0%. There were 1,782 predicted protein-coding genes, including those associated with virulence and antibiotic resistance.
RESUMEN
The inheritance of gene expression patterns is dependent on epigenetic regulation, but the establishment and maintenance of epigenetic landscapes during T cell differentiation are incompletely understood. Here we show that two stage-specific Cd4 cis-elements, the previously characterized enhancer E4p and a novel enhancer E4m, coordinately promote Cd4 transcription in mature thymic MHC-II-specific T cells, in part through the canonical Wnt pathway. Specifically, E4p licenses E4m to orchestrate DNA demethylation by TET1 and TET3, which in turn poises the Cd4 locus for transcription in peripheral T cells. Cd4 locus demethylation is important for subsequent Cd4 transcription in activated peripheral T cells wherein these cis-elements become dispensable. By contrast, in developing thymocytes the loss of TET1/3 does not affect Cd4 transcription, highlighting an uncoupled event between transcription and epigenetic modifications. Together our findings reveal an important function for thymic cis-elements in governing gene expression in the periphery via a heritable epigenetic mechanism.
Asunto(s)
Antígenos CD4/genética , Linfocitos T CD4-Positivos/fisiología , Elementos de Facilitación Genéticos/fisiología , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/fisiología , Animales , Antígenos CD4/metabolismo , Diferenciación Celular/genética , Quimera , Desmetilación del ADN , Metilación de ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Femenino , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Timo/citología , Timo/fisiologíaRESUMEN
We report here an update to the draft genome sequence of Kluyvera intestini sp. nov. strain GT-16, generated using MinION long-read sequencing technology. The complete genome sequence of the human-derived strain GT-16 measured 5,768,848 bp. An improved high-quality complete genome sequence provides insights into the mobility potential of resistance genes in this species.