Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 49, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714708

RESUMEN

Morphogenetic programs coordinate cell signaling and mechanical interactions to shape organs. In systems and synthetic biology, a key challenge is determining optimal cellular interactions for predicting organ shape, size, and function. Physics-based models defining the subcellular force distribution facilitate this, but it is challenging to calibrate parameters in these models from data. To solve this inverse problem, we created a Bayesian optimization framework to determine the optimal cellular force distribution such that the predicted organ shapes match the experimentally observed organ shapes. This integrative framework employs Gaussian Process Regression, a non-parametric kernel-based probabilistic machine learning modeling paradigm, to learn the mapping functions relating to the morphogenetic programs that maintain the final organ shape. We calibrated and tested the method on Drosophila wing imaginal discs to study mechanisms that regulate epithelial processes ranging from development to cancer. The parameter estimation framework successfully infers the underlying changes in core parameters needed to match simulation data with imaging data of wing discs perturbed with collagenase. The computational pipeline identifies distinct parameter sets mimicking wild-type shapes. It enables a global sensitivity analysis to support the regulation of actomyosin contractility and basal ECM stiffness to generate and maintain the curved shape of the wing imaginal disc. The optimization framework, combined with experimental imaging, identified that Piezo, a mechanosensitive ion channel, impacts fold formation by regulating the apical-basal balance of actomyosin contractility and elasticity of ECM. This workflow is extensible toward reverse-engineering morphogenesis across organ systems and for real-time control of complex multicellular systems.


Asunto(s)
Teorema de Bayes , Morfogénesis , Alas de Animales , Animales , Modelos Biológicos , Drosophila melanogaster , Discos Imaginales , Simulación por Computador , Drosophila
2.
Nat Commun ; 15(1): 2477, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509115

RESUMEN

How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Morfogénesis/fisiología , Citoesqueleto/metabolismo , Transducción de Señal/fisiología , Alas de Animales , Drosophila melanogaster/metabolismo
3.
Phys Biol ; 20(6)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37678266

RESUMEN

Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through the spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.


Asunto(s)
Fenómenos Biológicos , Optogenética , Morfogénesis/fisiología , Comunicación Celular , Transducción de Señal/fisiología
4.
Front Genet ; 13: 869719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480325

RESUMEN

Phenomics requires quantification of large volumes of image data, necessitating high throughput image processing approaches. Existing image processing pipelines for Drosophila wings, a powerful genetic model for studying the underlying genetics for a broad range of cellular and developmental processes, are limited in speed, precision, and functional versatility. To expand on the utility of the wing as a phenotypic screening system, we developed MAPPER, an automated machine learning-based pipeline that quantifies high-dimensional phenotypic signatures, with each dimension quantifying a unique morphological feature of the Drosophila wing. MAPPER magnifies the power of Drosophila phenomics by rapidly quantifying subtle phenotypic differences in sample populations. We benchmarked MAPPER's accuracy and precision in replicating manual measurements to demonstrate its widespread utility. The morphological features extracted using MAPPER reveal variable sexual dimorphism across Drosophila species and unique underlying sex-specific differences in morphogen signaling in male and female wings. Moreover, the length of the proximal-distal axis across the species and sexes shows a conserved scaling relationship with respect to the wing size. In sum, MAPPER is an open-source tool for rapid, high-dimensional analysis of large imaging datasets. These high-content phenomic capabilities enable rigorous and systematic identification of genotype-to-phenotype relationships in a broad range of screening and drug testing applications and amplify the potential power of multimodal genomic approaches.

5.
PLoS Comput Biol ; 17(11): e1009543, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723960

RESUMEN

Information flow within and between cells depends significantly on calcium (Ca2+) signaling dynamics. However, the biophysical mechanisms that govern emergent patterns of Ca2+ signaling dynamics at the organ level remain elusive. Recent experimental studies in developing Drosophila wing imaginal discs demonstrate the emergence of four distinct patterns of Ca2+ activity: Ca2+ spikes, intercellular Ca2+ transients, tissue-level Ca2+ waves, and a global "fluttering" state. Here, we used a combination of computational modeling and experimental approaches to identify two different populations of cells within tissues that are connected by gap junction proteins. We term these two subpopulations "initiator cells," defined by elevated levels of Phospholipase C (PLC) activity, and "standby cells," which exhibit baseline activity. We found that the type and strength of hormonal stimulation and extent of gap junctional communication jointly determine the predominate class of Ca2+ signaling activity. Further, single-cell Ca2+ spikes are stimulated by insulin, while intercellular Ca2+ waves depend on Gαq activity. Our computational model successfully reproduces how the dynamics of Ca2+ transients varies during organ growth. Phenotypic analysis of perturbations to Gαq and insulin signaling support an integrated model of cytoplasmic Ca2+ as a dynamic reporter of overall tissue growth. Further, we show that perturbations to Ca2+ signaling tune the final size of organs. This work provides a platform to further study how organ size regulation emerges from the crosstalk between biochemical growth signals and heterogeneous cell signaling states.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio , Calcio/metabolismo , Tamaño de los Órganos , Animales
6.
Biophys J ; 120(19): 4202-4213, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34461105

RESUMEN

Epithelial folding is a fundamental morphogenetic process that shapes planar epithelial sheets into complex three-dimensional structures. Multiple mechanisms can generate epithelial folds, including apical constriction, which acts locally at the cellular level, differential growth on the tissue scale, or buckling because of compression from neighboring tissues. Here, we investigate the formation of dorsally located epithelial folds at segment boundaries during the late stages of Drosophila embryogenesis. We found that the fold formation at the segment boundaries occurs through the juxtaposition of two key morphogenetic processes: local apical constriction and tissue-level compressive forces from posterior segments. Further, we found that epidermal spreading and fold formation are accompanied by spatiotemporal pulses of Hedgehog (Hh) signaling. A computational model that incorporates the local forces generated from the differential tensions of the apical, basal, and lateral sides of the cell and active forces generated within the whole tissue recapitulates the overall fold formation process in wild-type and Hh overexpression conditions. In sum, this work demonstrates how epithelial folding depends on multiple, separable physical mechanisms to generate the final morphology of the dorsal epidermis. This work illustrates the modularity of morphogenetic unit operations that occur during epithelial morphogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Epidermis , Proteínas Hedgehog , Morfogénesis
7.
PLoS Comput Biol ; 16(8): e1008105, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817654

RESUMEN

Epithelial sheets define organ architecture during development. Here, we employed an iterative multiscale computational modeling and quantitative experimental approach to decouple direct and indirect effects of actomyosin-generated forces, nuclear positioning, extracellular matrix, and cell-cell adhesion in shaping Drosophila wing imaginal discs. Basally generated actomyosin forces generate epithelial bending of the wing disc pouch. Surprisingly, acute pharmacological inhibition of ROCK-driven actomyosin contractility does not impact the maintenance of tissue height or curved shape. Computational simulations show that ECM tautness provides only a minor contribution to modulating tissue shape. Instead, passive ECM pre-strain serves to maintain the shape independent from actomyosin contractility. These results provide general insight into how the subcellular forces are generated and maintained within individual cells to induce tissue curvature. Thus, the results suggest an important design principle of separable contributions from ECM prestrain and actomyosin tension during epithelial organogenesis and homeostasis.


Asunto(s)
Actomiosina/metabolismo , Epitelio/anatomía & histología , Matriz Extracelular/metabolismo , Animales , Drosophila/anatomía & histología , Drosophila/embriología , Drosophila/metabolismo , Epitelio/metabolismo , Fosforilación , Alas de Animales/anatomía & histología , Alas de Animales/embriología , Alas de Animales/metabolismo
8.
Nat Commun ; 11(1): 3017, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541798

RESUMEN

Breast cancer brain metastases (BCBM) have a 5-20 year latency and account for 30% of mortality; however, mechanisms governing adaptation to the brain microenvironment remain poorly defined. We combine time-course RNA-sequencing of BCBM development with a Drosophila melanogaster genetic screen, and identify Rab11b as a functional mediator of metastatic adaptation. Proteomic analysis reveals that Rab11b controls the cell surface proteome, recycling proteins required for successful interaction with the microenvironment, including integrin ß1. Rab11b-mediated control of integrin ß1 surface expression allows efficient engagement with the brain ECM, activating mechanotransduction signaling to promote survival. Lipophilic statins prevent membrane association and activity of Rab11b, and we provide proof-of principle that these drugs prevent breast cancer adaptation to the brain microenvironment. Our results identify Rab11b-mediated recycling of integrin ß1 as regulating BCBM, and suggest that the recycleome, recycling-based control of the cell surface proteome, is a previously unknown driver of metastatic adaptation and outgrowth.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/patología , Integrina beta1/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Integrina beta1/genética , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Transporte de Proteínas , Transducción de Señal , Microambiente Tumoral , Proteínas de Unión al GTP rab/genética
9.
J Vis Exp ; (153)2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31814613

RESUMEN

Microfluidic devices allow for the manipulation of fluids, particles, cells, micro-sized organs or organisms in channels ranging from the nano to submillimeter scales. A rapid increase in the use of this technology in the biological sciences has prompted a need for methods that are accessible to a wide range of research groups. Current fabrication standards, such as PDMS bonding, require expensive and time consuming lithographic and bonding techniques. A viable alternative is the use of equipment and materials that are easily affordable, require minimal expertise and allow for the rapid iteration of designs. In this work we describe a protocol for designing and producing PET-laminates (PETLs), microfluidic devices that are inexpensive, easy to fabricate, and consume significantly less time to generate than other approaches to microfluidics technology. They consist of thermally bonded film sheets, in which channels and other features are defined using a craft cutter. PETLs solve field-specific technical challenges while dramatically reducing obstacles to adoption. This approach facilitates the accessibility of microfluidics devices in both research and educational settings, providing a reliable platform for new methods of inquiry.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica/instrumentación , Investigación Biomédica , Células Cultivadas , Educación , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/economía , Microfluídica/métodos
10.
J Biol Eng ; 13: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049075

RESUMEN

Reverse-engineering how complex multicellular systems develop and function is a grand challenge for systems bioengineers. This challenge has motivated the creation of a suite of bioengineering tools to develop increasingly quantitative descriptions of multicellular systems. Here, we survey a selection of these tools including microfluidic devices, imaging and computer vision techniques. We provide a selected overview of the emerging cross-talk between engineering methods and quantitative investigations within developmental biology. In particular, the review highlights selected recent examples from the Drosophila system, an excellent platform for understanding the interplay between genetics and biophysics. In sum, the integrative approaches that combine multiple advances in these fields are increasingly necessary to enable a deeper understanding of how to analyze both natural and synthetic multicellular systems.

11.
Biomicrofluidics ; 13(2): 024111, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31065310

RESUMEN

Microfluidic devices provide a platform for analyzing both natural and synthetic multicellular systems. Currently, substantial capital investment and expertise are required for creating microfluidic devices using standard soft-lithography. These requirements present barriers to entry for many nontraditional users of microfluidics, including developmental biology laboratories. Therefore, fabrication methodologies that enable rapid device iteration and work "out-of-the-box" can accelerate the integration of microfluidics with developmental biology. Here, we have created and characterized low-cost hybrid polyethylene terephthalate laminate (PETL) microfluidic devices that are suitable for cell and micro-organ culture assays. These devices were validated with mammalian cell lines and the Drosophila wing imaginal disc as a model micro-organ. First, we developed and tested PETLs that are compatible with both long-term cultures and high-resolution imaging of cells and organs. Further, we achieved spatiotemporal control of chemical gradients across the wing discs with a multilayered microfluidic device. Finally, we created a multilayered device that enables controllable mechanical loading of micro-organs. This mechanical actuation assay was used to characterize the response of larval wing discs at different developmental stages. Interestingly, increased deformation of the older wing discs for the same mechanical loading suggests that the compliance of the organ is increased in preparation for subsequent morphogenesis. Together, these results demonstrate the applicability of hybrid PETL devices for biochemical and mechanobiology studies on micro-organs and provide new insights into the mechanics of organ development.

12.
Biophys J ; 116(4): 725-740, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30704858

RESUMEN

The robust specification of organ development depends on coordinated cell-cell communication. This process requires signal integration among multiple pathways, relying on second messengers such as calcium ions. Calcium signaling encodes a significant portion of the cellular state by regulating transcription factors, enzymes, and cytoskeletal proteins. However, the relationships between the inputs specifying cell and organ development, calcium signaling dynamics, and final organ morphology are poorly understood. Here, we have designed a quantitative image-analysis pipeline for decoding organ-level calcium signaling. With this pipeline, we extracted spatiotemporal features of calcium signaling dynamics during the development of the Drosophila larval wing disc, a genetic model for organogenesis. We identified specific classes of wing phenotypes that resulted from calcium signaling pathway perturbations, including defects in gross morphology, vein differentiation, and overall size. We found four qualitative classes of calcium signaling activity. These classes can be ordered based on agonist stimulation strength Gαq-mediated signaling. In vivo calcium signaling dynamics depend on both receptor tyrosine kinase/phospholipase C γ and G protein-coupled receptor/phospholipase C ß activities. We found that spatially patterned calcium dynamics correlate with known differential growth rates between anterior and posterior compartments. Integrated calcium signaling activity decreases with increasing tissue size, and it responds to morphogenetic perturbations that impact organ growth. Together, these findings define how calcium signaling dynamics integrate upstream inputs to mediate multiple response outputs in developing epithelial organs.


Asunto(s)
Señalización del Calcio , Drosophila melanogaster/anatomía & histología , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Animales , Drosophila melanogaster/crecimiento & desarrollo , Tamaño de los Órganos , Organogénesis , Fenotipo
13.
Phys Biol ; 15(5): 051001, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29611534

RESUMEN

Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.


Asunto(s)
Señalización del Calcio , Células Epiteliales/citología , Epitelio/crecimiento & desarrollo , Animales , Calcio/metabolismo , Movimiento Celular , Simulación por Computador , Desarrollo Embrionario , Células Epiteliales/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Humanos , Modelos Biológicos , Morfogénesis
14.
Oncotarget ; 9(3): 3321-3337, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29423049

RESUMEN

Potassium ion (K+) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K+ channels in cancer. In this study, we demonstrate that use of the Kv11.1 K+ channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer. Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.

15.
Proc IEEE Int Symp Biomed Imaging ; 2018: 934-937, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32699575

RESUMEN

Wing disc pouches of fruit flies are a powerful genetic model for studying physiological intercellular calcium (Ca 2+) signals for dynamic analysis of cell signaling in organ development and disease studies. A key to analyzing spatial-temporal patterns of Ca 2+ signal waves is to accurately align the pouches across image sequences. However, pouches in different image frames may exhibit extensive intensity oscillations due to Ca 2+ signaling dynamics, and commonly used multimodal non-rigid registration methods may fail to achieve satisfactory results. In this paper, we develop a new two-phase non-rigid registration approach to register pouches in image sequences. First, we conduct segmentation of the region of interest. (i.e., pouches) using a deep neural network model. Second, we use a B-spline based registration to obtain an optimal transformation and align pouches across the image sequences. Evaluated using both synthetic data and real pouch data, our method considerably outperforms the state-of-the-art non-rigid registration methods.

16.
Biomed Opt Express ; 8(8): 3671-3686, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28856043

RESUMEN

A technological revolution in both light and electron microscopy imaging now allows unprecedented views of clotting, especially in animal models of hemostasis and thrombosis. However, our understanding of three-dimensional high-resolution clot structure remains incomplete since most of our recent knowledge has come from studies of relatively small clots or thrombi, due to the optical impenetrability of clots beyond a few cell layers in depth. Here, we developed an optimized optical clearing method termed cCLOT that renders large whole blood clots transparent and allows confocal imaging as deep as one millimeter inside the clot. We have tested this method by investigating the 3D structure of clots made from reconstituted pre-labeled blood components yielding new information about the effects of clot contraction on erythrocytes. Although it has been shown recently that erythrocytes are compressed to form polyhedrocytes during clot contraction, observations of this phenomenon have been impeded by the inability to easily image inside clots. As an efficient and non-destructive method, cCLOT represents a powerful research tool in studying blood clot structure and mechanisms controlling clot morphology. Additionally, cCLOT optical clearing has the potential to facilitate imaging of ex vivo clots and thrombi derived from healthy or pathological conditions.

17.
Biophys J ; 113(2): 491-501, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746859

RESUMEN

Mechanical forces are critical but poorly understood inputs for organogenesis and wound healing. Calcium ions (Ca2+) are critical second messengers in cells for integrating environmental and mechanical cues, but the regulation of Ca2+ signaling is poorly understood in developing epithelial tissues. Here we report a chip-based regulated environment for microorgans that enables systematic investigations of the crosstalk between an organ's mechanical stress environment and biochemical signaling under genetic and chemical perturbations. This method enabled us to define the essential conditions for generating organ-scale intercellular Ca2+ waves in Drosophila wing discs that are also observed in vivo during organ development. We discovered that mechanically induced intercellular Ca2+ waves require fly extract growth serum as a chemical stimulus. Using the chip-based regulated environment for microorgans, we demonstrate that not the initial application but instead the release of mechanical loading is sufficient, but not necessary, to initiate intercellular Ca2+ waves. The Ca2+ response depends on the prestress intercellular Ca2+ activity and not on the magnitude or duration of the mechanical stimulation applied. Mechanically induced intercellular Ca2+ waves rely on IP3R-mediated Ca2+-induced Ca2+ release and propagation through gap junctions. Thus, intercellular Ca2+ waves in developing epithelia may be a consequence of stress dissipation during organ growth.


Asunto(s)
Señalización del Calcio , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Discos Imaginales/metabolismo , Estrés Fisiológico , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Fenómenos Biomecánicos , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Diseño Asistido por Computadora , Diseño de Equipo , Uniones Comunicantes/metabolismo , Discos Imaginales/crecimiento & desarrollo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Espacio Intracelular/metabolismo , Dispositivos Laboratorio en un Chip , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Organogénesis , Presión , Técnicas de Cultivo de Tejidos , Imagen de Colorante Sensible al Voltaje
18.
PLoS Comput Biol ; 13(5): e1005533, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28531187

RESUMEN

Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive.


Asunto(s)
Forma de la Célula/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Mitosis/fisiología , Animales , Línea Celular , Biología Computacional , Drosophila , Humanos , Modelos Biológicos
19.
Methods Mol Biol ; 1478: 203-213, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27730583

RESUMEN

The ex vivo cultivation and live imaging of wing discs open exciting new research avenues by overcoming the limitations of end-point analysis of fixed tissues. Here we describe how to prepare an optimized wing disc culture medium (WM1) and how to dissect and arrange wing discs for cultivation and live imaging. This protocol enables the study of dynamic phenomena such as cell division and delamination as well as the use of pharmacological compounds and biosensors. Wing discs cultured and imaged as described here, maintain constant levels of proliferation during the first ten hours of culture.


Asunto(s)
Discos Imaginales/ultraestructura , Imagen Óptica/métodos , Técnicas de Cultivo de Tejidos , Alas de Animales/ultraestructura , Animales , Mezclas Complejas/química , Medios de Cultivo/farmacología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Discos Imaginales/efectos de los fármacos , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Insulina/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/ultraestructura , Alas de Animales/efectos de los fármacos , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
20.
J R Soc Interface ; 13(124)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-28334699

RESUMEN

Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues.


Asunto(s)
Movimiento Celular/fisiología , Rastreo Celular , Ectodermo/embriología , Células Epiteliales/metabolismo , Modelos Biológicos , Animales , Drosophila melanogaster , Ectodermo/citología , Células Epiteliales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA