Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Radiol Adv ; 1(1): umae005, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38855428

RESUMEN

Background: Medial meniscus root tears often lead to knee osteoarthritis. The extent of meniscal tissue changes beyond the localized root tear is unknown. Purpose: To evaluate if 7 Tesla 3D T2*-mapping can detect intrasubstance meniscal degeneration in patients with arthroscopically verified medial meniscus posterior root tears (MMPRTs), and assess if tissue changes extend beyond the immediate site of the posterior root tear detected on surface examination by arthroscopy. Methods: In this prospective study we acquired 7 T knee MRIs from patients with MMPRTs and asymptomatic controls. Using a linear mixed model, we compared T2* values between patients and controls, and across different meniscal regions. Patients underwent arthroscopic assessment before MMPRT repair. Changes in pain levels before and after repair were calculated using Knee Injury & Osteoarthritis Outcome Score (KOOS). Pain changes and meniscal extrusion were correlated with T2* using Pearson correlation (r). Results: Twenty patients (mean age 53 ± 8; 16 females) demonstrated significantly higher T2* values across the medial meniscus (anterior horn, posterior body and posterior horn: all P < .001; anterior body: P = .007), and lateral meniscus anterior (P = .024) and posterior (P < .001) horns when compared to the corresponding regions in ten matched controls (mean age 53 ± 12; 8 females). Elevated T2* values were inversely correlated with the change in pain levels before and after repair. All patients had medial meniscal extrusion of ≥2 mm. Arthroscopy did not reveal surface abnormalities in 70% of patients (14 out of 20). Conclusions: Elevated T2* values across both medial and lateral menisci indicate that degenerative changes in patients with MMPRTs extend beyond the immediate vicinity of the posterior root tear. This suggests more widespread meniscal degeneration, often undetected by surface examinations in arthroscopy.

2.
Magn Reson Med ; 91(3): 1099-1114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37997011

RESUMEN

PURPOSE: To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS: Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponential T 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS: From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ ( T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ( fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850), fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION: TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.


Asunto(s)
Cartílago Articular , Cartílago , Humanos , Niño , Preescolar , Imagen por Resonancia Magnética/métodos , Sodio , Colágeno , Agua , Cartílago Articular/diagnóstico por imagen
3.
Magn Reson Imaging ; 97: 91-101, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36610648

RESUMEN

Degeneration of cartilage can be studied non-invasively with quantitative MRI. A promising parameter for detecting early osteoarthritis in articular cartilage is T1ρ, which can be tuned via the amplitude of the spin-lock pulse. By measuring T1ρ at several spin-lock amplitudes, the dispersion of T1ρ is obtained. The aim of this study is to find out if the dispersion contains diagnostically relevant information complementary to a T1ρ measurement at a single spin-lock amplitude. To this end, five differently acquired dispersion parameters are utilized; A, B, τc, T1ρ/T2, and R2 - R1ρ. An open dataset of an equine model of post-traumatic cartilage was utilized to assess the T1ρ dispersion parameters for the evaluation of cartilage degeneration. Firstly, the parameters were compared for their sensitivity in detecting degenerative changes. Secondly, the relationship of the dispersion parameters to histological and biomechanical reference parameters was studied. Parameters A, T1ρ/T2, and R2 - R1ρ were found to be sensitive to lesion-induced changes in the cartilage within sample. Strong correlations of several dispersion parameters with optical density, as well as with collagen fibril angle were found. Most of the dispersion parameters correlated strongly with individual T1ρ values. The results suggest that dispersion parameters can in some cases provide a more accurate description of the biochemical composition of cartilage as compared to conventional MRI parameters. However, in most cases the information given by the dispersion parameters is more of a refinement than complementary to conventional quantitative MRI.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Caballos , Imagen por Resonancia Magnética/métodos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Osteoartritis/diagnóstico por imagen
4.
J Orthop Res ; 41(1): 150-160, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35430743

RESUMEN

Juvenile osteochondritis dissecans (JOCD) is an orthopedic joint disorder of children and adolescents that can lead to premature osteoarthritis. Thirteen patients (mean age: 12.3 years, 4 females), 15 JOCD-affected and five contralateral healthy knees, that had a baseline and a follow-up magnetic resonance imaging (MRI) (mean interval of 8.9 months) and were treated nonoperatively during this interval were included. Retrospectively, patients were assigned to operative or nonoperative groups based on their electronic medical records. Volumetric mean T2 * values were calculated within regions of interest (progeny lesion, interface, parent bone) and region matched control bone in healthy contralateral knees and condyles. The normalized percentage difference of T2 * between baseline and follow up MRI in nonoperative patients significantly increased in progeny lesion (-47.8%, p < 0.001), parent bone (-13.9%, p < 0.001), and interface (-32.3%, p = 0.011), whereas the differences in operative patients were nonsignificant and below 11%. In nonoperative patients, the progeny lesion (p < 0.001) and interface T2 * values (p = 0.012) were significantly higher than control bone T2 * at baseline, but not at follow-up (p = 0.219, p = 1.000, respectively). In operative patients, the progeny lesion and interface T2 * values remained significantly elevated compared to the control bone both at baseline (p < 0.001, p < 0.001) and follow-up (p < 0.001, p < 0.001), respectively. Clinical Significance: Longitudinal T2 * mapping differentiated nonhealing from healing JOCD lesions following initial nonoperative treatment, which may assist in prognosis and improve the ability of surgeons to make recommendations regarding operative versus nonoperative treatment.


Asunto(s)
Imagen por Resonancia Magnética , Niño , Humanos , Adolescente , Proyectos Piloto , Estudios Retrospectivos
5.
J Orthop Res ; 41(3): 663-673, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35716161

RESUMEN

Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that involves the articular-epiphyseal cartilage complex and underlying bone. Clinical disease is often characterized by the presence of radiographically apparent osteochondral flaps and fragments. The existence of early JOCD lesions (osteochondrosis latens [OCL] and osteochondrosis manifesta [OCM]) that precede the development of osteochondral flaps and fragments is also well recognized. However, identification of naturally occurring OCL lesions (confined to cartilage) using noninvasive imaging techniques has not yet been accomplished. We hypothesized that 10.5 T magnetic resonance imaging (MRI) can identify naturally occurring OCL lesions at predilection sites in intact joints of juvenile pigs. Unilateral elbows and knees (stifles) were harvested from three pigs aged 4, 8, and 12 weeks, and scanned in a 10.5 T MRI to obtain morphological 3D DESS images, and quantitative T2 and T1ρ relaxation time maps. Areas with increased T2 and T1ρ relaxation times in the articular-epiphyseal cartilage complex were identified in 1/3 distal femora and 3/3 distal humeri and were considered suspicious for OCL or OCM lesions. Histological assessment confirmed the presence of OCL or OCM lesions at each of these sites and failed to identify additional lesions. Histological findings included necrotic vascular profiles associated with areas of chondronecrosis either confined to the epiphyseal cartilage (OCL, 4- and 8-week-old specimens) or resulting in a delay in endochondral ossification (OCM, 12-week-old specimen). Future studies with clinical MR systems (≤7 T) are needed to determine whether these MRI methods are suitable for the in vivo diagnosis of early JOCD lesions in humans.


Asunto(s)
Osteocondritis Disecante , Osteocondrosis , Humanos , Niño , Porcinos , Animales , Osteocondrosis/patología , Necrosis , Imagen por Resonancia Magnética , Imagenología Tridimensional
6.
J Orthop Res ; 41(7): 1449-1463, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36484124

RESUMEN

Current clinical MRI of patients with juvenile osteochondritis dissecans (JOCD) is limited by the low reproducibility of lesion instability evaluation and inability to predict which lesions will heal after nonoperative treatment and which will later require surgery. The aim of this study is to verify the ability of apparent diffusion coefficient (ADC) to detect differences in lesion microstructure between different JOCD stages, treatment groups, and healthy, unaffected contralateral knees. Pediatric patients with JOCD received quantitative diffusion MRI between January 2016 and September 2020 in this prospective research study. A disease stage (I-IV) and stability of each JOCD lesion was evaluated. ADCs were calculated in progeny lesion, interface, parent bone, cartilage overlying lesion, control bone, and control cartilage regions. ADC differences were evaluated using linear mixed models with Bonferroni correction. Evaluated were 30 patients (mean age, 13 years; 21 males), with 40 JOCD-affected and 12 healthy knees. Nine patients received surgical treatment after MRI. Negative Spearman rank correlations were found between ADCs and JOCD stage in the progeny lesion (ρ = -0.572; p < 0.001), interface (ρ = -0.324; p = 0.041), and parent bone (ρ = -0.610; p < 0.001), demonstrating the sensitivity of ADC to microstructural differences in lesions at different JOCD stages. We observed a significant increase in the interface ADCs (p = 0.007) between operative (mean [95% CI] = 1.79 [1.56-2.01] × 10-3 mm2 /s) and nonoperative group (1.27 [0.98-1.57] × 10-3 mm2 /s). Quantitative diffusion MRI detects microstructural differences in lesions at different stages of JOCD progression towards healing and reveals differences between patients assigned for operative versus nonoperative treatment.


Asunto(s)
Cartílago Articular , Osteocondritis Disecante , Masculino , Humanos , Niño , Adolescente , Osteocondritis Disecante/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Reproducibilidad de los Resultados , Estudios Prospectivos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética
7.
Magn Reson Med ; 88(4): 1702-1719, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35692053

RESUMEN

PURPOSE: To develop and evaluate a novel RF shimming optimization strategy tailored to improve the transmit efficiency in turbo spin echo imaging when performing time-interleaved acquisition of modes (TIAMO) at ultrahigh fields. THEORY AND METHODS: A nonlocalized efficiency shimming cost function is proposed and extended to perform TIAMO using acquisition modes optimized for refocused echoes (AMORE). The nonlocalized efficiency shimming was demonstrated in brain and knee imaging at 7 Tesla. Phantom and in vivo torso imaging studies were performed to compare the performance between AMORE and previously proposed TIAMO mode optimizations with and without localized constraints in turbo spin echo and gradient echo acquisitions. RESULTS: The proposed nonlocalized efficiency RF shimming produced a circularly polarized-like field with fewer signal dropouts in the brain and knee. For larger targets, AMORE was used and required a significantly lower transmitter voltage to produce a similar contrast to existing TIAMO mode design approaches for turbo spin echo as well as gradient echo acquisitions. In vivo, AMORE effectively reduced signal dropout in the interior torso while providing more uniform contrast with reduced transmit power. A local constraint further improved performance for a target region while maintaining performance in the larger FOV. CONCLUSION: AMORE based on the presented nonlocalized efficiency shimming cost function demonstrated improved contrast and SNR uniformity as well as increased transmit efficiency for both gradient echo and turbo spin echo acquisitions.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
8.
J Orthop Res ; 40(2): 484-494, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33788301

RESUMEN

This study investigated the sensitivity of T1ρ and T2 relaxation time mapping to detect acute ischemic injury to the secondary ossification center (SOC) and epiphyseal cartilage of the femoral head in a piglet model of Legg-Calvé-Perthes disease. Six piglets underwent surgery to induce global right femoral head ischemia and were euthanized 48 h later. Fresh operated and contralateral-control femoral heads were imaged ex vivo with T1, T2, and T1ρ mapping using a 9.4T magnetic resonance imaging scanner. The specimens were imaged a second time after a freeze/thaw cycle and then processed for histology. T1, T2, and T1ρ measurements in the SOC, epiphyseal cartilage, articular cartilage, and metaphysis were compared between operated and control femoral heads using paired t tests. The effects of freeze/thaw, T1ρ spin-lock frequency, and fat saturation were also investigated. Five piglets with histologically confirmed ischemic injury were quantitatively analyzed. T1ρ was increased in the SOC (101 ± 15 vs. 73 ± 16 ms; p = 0.0026) and epiphyseal cartilage (84.9 ± 9.2 vs. 74.3 ± 3.6 ms; p = 0.031) of the operated versus control femoral heads. T2 was also increased in the SOC (28.7 ± 2.0 vs. 22.7 ± 1.7; p = 0.0037) and epiphyseal cartilage (57.4 ± 4.7 vs. 49.0 ± 2.7; p = 0.0041). No changes in T1 were detected. The sensitivities of T1ρ and T2 mapping in detecting ischemic injury were maintained after a freeze/thaw cycle, and T1ρ sensitivity was maintained after varying spin-lock frequency and applying fat saturation. In conclusion, T1ρ and T2 mapping are sensitive in detecting ischemic injury to the SOC and epiphyseal cartilage of the femoral head as early as 48 h after ischemia induction.


Asunto(s)
Cartílago Articular , Enfermedad de Legg-Calve-Perthes , Animales , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/patología , Placa de Crecimiento/patología , Isquemia/diagnóstico por imagen , Isquemia/etiología , Enfermedad de Legg-Calve-Perthes/diagnóstico por imagen , Enfermedad de Legg-Calve-Perthes/patología , Imagen por Resonancia Magnética/métodos , Porcinos
9.
J Orthop Res ; 40(7): 1632-1644, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34637164

RESUMEN

Juvenile osteochondritis dissecans (JOCD) lesions contain cartilaginous, fibrous and osseous tissues which are difficult to distinguish with clinical, morphological magnetic resonance imaging (MRI). Quantitative T2 * mapping has earlier been used to evaluate microstructure and composition of all aforementioned tissues as well as bone mineral density. However, the ability of T2 * mapping to detect changes in tissue composition between different JOCD lesion regions, different disease stages, and between stable and unstable lesions has not been demonstrated. This study analyzed morphological and T2 * MRI data from 25 patients (median age, 12.1 years) with 34 JOCD-affected and 13 healthy knees. Each lesion was assigned a stage reflecting the natural history of JOCD, with stages I and IV representing early and healed lesion, respectively. T2 * values were evaluated within the progeny lesion, interface and parent bone of each lesion and in the control bone region. T2 * was negatively correlated with JOCD stage in progeny lesion (ρ = -0.871; p < 0.001) and interface regions (ρ = -0.649; p < 0.001). Stage IV progeny showed significantly lower T2 * than control bone (p = 0.028). T2 * was significantly lower in parent bone than in control bone of patients with stable lesions (p = 0.009), but not in patients with unstable lesions (p = 0.14). Clinical significance: T2 * mapping enables differentiation between different stages of JOCD and quantitative measurement of the ossification degree in progeny lesion and interface. The observed T2 * decrease in healed and stable lesions may indicate increased bone density as a result of the active repair process. T2 * mapping provides quantitative information about JOCD lesion composition.


Asunto(s)
Osteocondritis Disecante , Niño , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética/métodos , Osteocondritis Disecante/diagnóstico por imagen , Padres , Estudios Retrospectivos
10.
ScientificWorldJournal ; 2021: 9978819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456636

RESUMEN

OBJECTIVE: Ultrasonography (US) has a promising role in evaluating the knee joint, but capability to visualize the femoral articular cartilage needs systematic evaluation. We measured the extent of this acoustic window by comparing standardized US images with the corresponding MRI views of the femoral cartilage. DESIGN: Ten healthy volunteers without knee pathology underwent systematic US and MRI evaluation of both knees. The femoral cartilage was assessed on the oblique transverse axial plane with US and with 3D MRI. The acoustic window on US was compared to the corresponding views of the femoral sulcus and both condyles on MRI. The mean imaging coverage of the femoral cartilage and the cartilage thickness measurements on US and MRI were compared. RESULTS: Mean imaging coverage of the cartilage of the medial femoral condyle was 66% (range 54%-80%) and on the lateral femoral condyle 37% (range 25%-51%) compared with MRI. Mean cartilage thickness measurement in the femoral sulcus was 3.17 mm with US and 3.61 mm with MRI (14.0% difference). The corresponding measurements in the medial femoral condyle were 1.95 mm with US and 2.35 mm with MRI (21.0% difference), and in the lateral femoral condyle, they were 2.17 mm and 2.73 mm (25.6% difference), respectively. CONCLUSION: Two-thirds of the articular cartilage of the medial femoral condyle, and one-third in the lateral femoral condyle, can be assessed with US. The cartilage thickness measurements seem to be underestimated by US. These results show promise for the evaluation of the weight-bearing cartilage of the medial femoral condyle with US.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Adulto , Cartílago Articular/anatomía & histología , Femenino , Fémur/anatomía & histología , Voluntarios Sanos , Humanos , Articulación de la Rodilla/anatomía & histología , Imagen por Resonancia Magnética , Masculino , Ultrasonografía
11.
Z Med Phys ; 31(1): 48-57, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33183893

RESUMEN

PURPOSE: To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets. METHODS: In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND). RESULTS: The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506). CONCLUSION: The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Sodio
12.
Invest Radiol ; 55(7): 430-437, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32011573

RESUMEN

OBJECTIVES: Several articles have investigated potential of sodium (Na) magnetic resonance imaging (MRI) for the in vivo evaluation of cartilage health, but so far no study tested its feasibility for the evaluation of focal cartilage lesions of grade 1 or 2 as defined by the International Cartilage Repair Society. The aims of this study were to evaluate the ability of Na-MRI to differentiate between early focal lesions and normal-appearing cartilage, to evaluate within-subject reproducibility of Na-MRI, and to monitor longitudinal changes in participants with low-grade, focal chondral lesions. MATERIALS AND METHODS: Thirteen participants (mean age, 50.1 ± 10.9 years; 7 women, 6 men) with low-grade, focal cartilage lesions in the weight-bearing region of femoral cartilage were included in this prospective cohort study. Participants were assessed at baseline, 1 week, 3 months, and 6 months using morphological MRI at 3 T and 7 T, compositional Na-MRI at 7 T, and the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. Na signal intensities corrected for coil sensitivity and partial volume effect (Na-cSI) were calculated in the lesion, and in weight-bearing and non-weight-bearing regions of healthy femoral cartilage. Coefficients of variation, repeated measures analysis of covariance models, and Pearson correlation coefficients were calculated to evaluate within-subject reproducibility as well as cross-sectional and longitudinal changes in Na-cSI values. RESULTS: The mean coefficients of variation of Na-cSI values between the baseline and 1-week follow-up were 5.1% or less in all cartilage regions. Significantly lower Na-cSI values were observed in lesion than in weight-bearing and non-weight-bearing regions at all time points (all P values ≤ 0.002). Although a significant decrease from baseline Na-cSI values in lesion was found at 3-month visit (P = 0.015), no substantial change was observed at 6 months. KOOS scores have improved in all subscales at 3 months and 6 months visit, with a significant increase observed only in the quality of life subscale (P = 0.004). CONCLUSIONS: In vivo Na-MRI is a robust and reproducible method that allows to differentiate between low-grade, focal cartilage lesions and normal-appearing articular cartilage, which supports the concept that compositional cartilage changes can be found early, before the development of advanced morphological changes visible at clinical 3-T MRI.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Isótopos de Sodio , Adulto , Anciano , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad
13.
Magn Reson Imaging ; 60: 145-156, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30943437

RESUMEN

PURPOSE: To reduce acquisition time and to improve image quality in sodium magnetic resonance imaging (23Na MRI) using an iterative reconstruction algorithm for multi-channel data sets based on compressed sensing (CS) with anatomical 1H prior knowledge. METHODS: An iterative reconstruction for 23Na MRI with multi-channel receiver coils is presented. Based on CS it utilizes a second order total variation (TV(2)), adopted by anatomical weighting factors (AnaWeTV(2)) obtained from a high-resolution 1H image. A support region is included as additional regularization. Simulated and measured 23Na multi-channel data sets (n = 3) of the female breast acquired at 7 T with different undersampling factors (USF = 1.8/3.6/7.2/14.4) were reconstructed and compared to a conventional gridding reconstruction. The structural similarity was used to assess image quality of the reconstructed simulated data sets and to optimize the weighting factors for the CS reconstruction. RESULTS: Compared with a conventional TV(2), the AnaWeTV(2) reconstruction leads to an improved image quality due to preserving of known structure and reduced partial volume effects. An additional incorporated support region shows further improvements for high USFs. Since the decrease in image quality with higher USFs is less pronounced compared to a conventional gridding reconstruction, proposed algorithm is beneficial especially for higher USFs. Acquisition time can be reduced by a factor of 4 (USF = 7.2), while image quality is still similar to a nearly fully sampled (USF = 1.8) gridding reconstructed data set. CONCLUSION: Especially for high USFs, the proposed algorithm allows improved image quality for multi-channel 23Na MRI data sets.


Asunto(s)
Mama/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Adulto , Algoritmos , Artefactos , Simulación por Computador , Femenino , Humanos , Sodio
14.
Artículo en Inglés | MEDLINE | ID: mdl-32043049

RESUMEN

We introduce a quantitative measure of epiphyseal cartilage vascularity and examine vessel networks during human skeletal maturation. Understanding early morphological changes in the distal femoral condyle is expected to provide information on the pathogenesis of developmental diseases such as juvenile osteochondritis dissecans. METHODS: Twenty-two cadaveric knees from donors ranging from 1 month to 10 years of age were included in the study. Images of bone, cartilage, and vascularity were acquired simultaneously with a 3-dimensional gradient-recalled-echo magnetic resonance imaging (MRI) sequence. The secondary ossification center volume and total epiphysis cartilage volume ratio and articular-epiphyseal cartilage complex and epiphyseal cartilage widths were measured. Epiphyseal cartilage vascularity was visualized for 9 data sets with quantitative susceptibility mapping and vessel filtering, resulting in 3-dimensional data to inform vessel network segmentation and to calculate vascular density. RESULTS: Three distinct, non-anastomosing vascular networks (2 peripheral and 1 central) supply the distal femoral epiphyseal cartilage. The central network begins regression as early as 3 months and is absent by 4 years. From 1 month to 3 years, the ratio of central to peripheral vascular area density decreased from 1.0 to 0.5, and the ratio of central to peripheral vascular skeletal density decreased from 0.9 to 0.6. A narrow, peripheral vascular rim was present at 8 years but had disappeared by 10 years. The secondary ossification center progressively acquires the shape of the articular-epiphyseal cartilage complex by 8 years of age, and the central areas of the medial and lateral femoral condyles are the last to ossify. CONCLUSIONS: Using cadaveric pediatric knees, we provide quantitative, 3-dimensional measures of epiphyseal cartilage vascular regression during skeletal development using vessel image features. Central areas with both early vascular regression and delayed ossification correspond to predilection sites of juvenile osteochondritis dissecans in this limited case series. Our findings highlight specific vascular vulnerabilities that may lead to improved understanding of the pathogenesis and better-informed clinical management decisions in developmental skeletal diseases. CLINICAL RELEVANCE: This paradigm shift in understanding of juvenile osteochondritis dissecans etiology and disease progression may critically impact future patient management. Our findings highlight specific vascular vulnerabilities during skeletal maturation in a group of active young patients seen primarily by orthopaedic surgeons and sports medicine professionals.

15.
Magn Reson Imaging ; 55: 86-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30244140

RESUMEN

OBJECTIVE: To investigate T2 mapping as a possible marker for low-grade human articular cartilage lesions during a one-year follow-up, possible changes during the follow-up and compare the reliability and sensitivity of these measurements on high-field (3 T) and ultra-high-field (7 T) MRI scanners. DESIGN: Twenty-one patients with femoral, tibial and patellar cartilage defect in the knee joint participated in the study. The MRI protocol consisted of morphological, as well as three-dimensional triple-echo steady-state (3D-TESS) T2 mapping sequences with similar parameters at 3T and 7T. Patients were scanned at five time-points up to 12 months. T2 values were evaluated in the lesion and healthy-appearing regions for superficial and deep cartilage zone. The repeated ANOVA was used to determine differences in T2 values at various time points. RESULTS: A significant decrease in T2 values was observed between baseline and six months in the superficial layer of the lesion in patients at 3 T (decrease from 41.89 ±â€¯9.3 ms to 31.21 ±â€¯7.2 ms, which is a difference of -5.67 ±â€¯2.2 ms (p = 0.031)), and at 12 months in the superficial layer of the lesion in patients at 3 T (decrease from 41.89 ±â€¯9.3 ms to 35.28 ±â€¯4.9 ms, which is a difference of -6.60 ±â€¯4.4 ms (p = 0.044). No significant differences were recorded at 7 T. CONCLUSION: The change in T2 values acquired with 3 T 3D-TESS appears to be reflecting subtle changes of cartilage composition in the course of low-grade lesion development. 7 T T2 mapping does not reflect these changes probably due to completely decayed short T2 component.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Adulto , Cartílago Articular/patología , Femenino , Fémur/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Articulación de la Rodilla/anatomía & histología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Rótula/diagnóstico por imagen , Rótula/patología , Reproducibilidad de los Resultados , Tibia/diagnóstico por imagen
16.
J Biomech ; 61: 34-44, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28807526

RESUMEN

The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium (23Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA.


Asunto(s)
Cartílago Articular/metabolismo , Marcha , Articulación de la Rodilla/fisiología , Adulto , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/fisiopatología , Masculino , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Proteoglicanos/metabolismo
17.
Cartilage ; 8(1): 31-41, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27994718

RESUMEN

The incidence of osteochondral lesions, as well as osteoarthritis of the ankle joint following osteochondritis dissecans and trauma, has been reappraised in recent years. Consequently, an increasing number of surgical interventions using different cartilage repair techniques is performed in the ankle joint, which has resulted in a growing demand for repetitive and objective assessment of cartilage tissue and its repair. While morphological imaging does enable monitoring of macroscopic changes with increasing precision, it fails to provide information about the ultrastructural composition of cartilage. The significance of molecular changes in cartilage matrix composition, however, is increasingly recognized, as it is assumed that macroscopic cartilage degeneration is preceded by a loss in glycosaminoglycans and a disorganization of the collagen network. Recent advances in biochemical magnetic resonance imaging (MRI) have yielded sequences sensitive to these changes, thus providing invaluable insight into both early cartilage degeneration and maturation of repair tissue, on a molecular level. The aim of this review was to provide a comprehensive overview of these techniques, including water and collagen-sensitive T2/T2* mapping, as well as glycosaminoglycan-sensitive sequences such as delayed gadolinium-enhanced MRI of cartilage dGEMRIC, and sodium imaging, and describe their applications for the ankle joint.

18.
Invest Radiol ; 52(1): 42-54, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27434621

RESUMEN

OBJECTIVE: The aim of this study was to compare quantitative and semiquantitative parameters (signal-to-noise ratio [SNR] and diagnostic confidence) from a standard knee magnetic resonance imaging (MRI) examination with comparable sequence protocols and acquisition times at 3 T and at 7 T. MATERIALS AND METHODS: Forty patients experiencing knee pain of unknown etiology underwent comparable MR protocols with standard turbo-spin echo and short tau inversion recovery sequences of the knee joint (5 sequences) at 3 T and 7 T. For quantitative analysis, SNR was determined using these 5 sequences and 3 additional morphological sequences. For a semiquantitative assessment of diagnostic confidence, a diagnostic confidence score (DCS) was assigned, using a 10-point scale. Two experienced radiologists who specialized in musculoskeletal imaging and who were blinded to the field-strength independently assessed 22 potential pathological findings, in total, in 4 anatomically defined areas in the knee joint and rated their diagnostic confidence. RESULTS: In quantitative analysis, all sequences provided higher voxel-volume-adjusted SNR values at 7 T compared with that at 3 T. In semiquantitative analysis, summed DCS values for potential pathological findings in each of the 4 anatomically defined areas were higher at 7 T compared with that at 3 T. There was a statistically significant improvement in the DCS for both readers at 7 T for the diagnosis and exclusion of focal or diffuse grade I or II cartilage defects in the patellar cartilage. For 8 potential pathological findings, a statistically significant difference between the 2 field-strengths could be observed for 1 reader only. For the residual 13 potential pathological findings, there was no statistically significant difference observed. The percentage of concordant ratings was 84.6% at 3 T and 85.4% at 7 T. CONCLUSIONS: Ultra-high-field MRI at 7 T improved the overall diagnostic confidence in routine MRI of the knee joint compared with that at 3 T. This is especially true for small joint structures and subtle lesions. Higher spatial resolution was identified as the main reason for this improvement.


Asunto(s)
Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Artropatías/diagnóstico por imagen , Artropatías/patología , Articulación de la Rodilla/patología , Masculino , Relación Señal-Ruido , Adulto Joven
19.
J Biomech ; 49(14): 3387-3396, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27667478

RESUMEN

The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium (23Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Cartílago Articular/fisiología , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiología , Imagen por Resonancia Magnética , Sodio/metabolismo , Adulto , Cartílago Articular/metabolismo , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla/metabolismo , Masculino , Proteoglicanos/metabolismo , Estrés Mecánico , Tibia , Soporte de Peso
20.
Eur J Radiol ; 85(4): 771-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26971422

RESUMEN

OBJECTIVES: The aim was to systematically compare T2 relaxation times of the knee and ankle cartilage within subjects at 7T. METHODS: Ten healthy volunteers were examined by 7 Tesla MR using a three-dimensional triple-echo steady state sequence (3D-TESS). The differences between seven cartilage compartments (patella, femur, proximal tibia, and distal tibia and talus in both medial and lateral facet) were analyzed by ANOVA. RESULTS: The results showed statistically significantly higher T2 (mean ± standard deviation, in milliseconds) values in patellar (25.8 ± 1.2) and femoral (24.9 ± 1.3) cartilage compared to the tibial (19.2 ± 1) and talar (18.1 ± 0.6 ms) cartilage. The cartilages of the medial and lateral facet in the ankle joint were not significantly different (p>0.05). CONCLUSIONS: This is the first study to systematically compare within-subject T2 values in the knee and ankle non-invasively, in vivo. Our results are in agreement with the previous findings demonstrating different biochemical and biomechanical properties between the knee and ankle cartilage.


Asunto(s)
Articulación del Tobillo/anatomía & histología , Cartílago Articular/anatomía & histología , Articulación de la Rodilla/anatomía & histología , Imagen por Resonancia Magnética/métodos , Adulto , Tobillo , Femenino , Fémur/anatomía & histología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Rótula/anatomía & histología , Astrágalo/anatomía & histología , Tibia/anatomía & histología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA