Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611164

RESUMEN

This study explores the impact of adding waste vehicular crumb rubber to the commercially available warm mix additives Sasobit® and Zycotherm® on modified asphalt binders' physical and rheological properties. Various concentrations of crumb rubber (0%, 10%, 15%, and 20%) were introduced to asphalt binder samples with 2% and 4% Sasobit and 1.5% and 3% Zycotherm. The investigation employed conventional tests (penetration and softening point) and advanced mechanical characterization tests, including Superpave rotational viscosity (RV), Dynamic Shear Rheometer (DSR), DSR multi-stress creep recovery (MSCR), DSR linear amplitude sweep (LAS), and Bending Beam Rheometer (BBR). Traditional tests measured the asphalt consistency, while workability was assessed through the RV test. The results showed that the Zycotherm binders experienced a more significant penetration reduction than the Sasobit binders. Additionally, an increased crumb rubber content consistently elevated the softening point and rotational viscosity, enhancing the complex shear modulus (G*) values. Rubberized binders exhibited an improved rutting performance and low-temperature PG grades. Increasing the crumb rubber content enhanced fatigue life, with Z1.5CR20 and S2CR20 demonstrating the longest fatigue lives among the Zycotherm and Sasobit binders, respectively. Overall, Z1.5CR20 is recommended for colder climates, while S2CR20 is suitable for hot-climate applications based on extensive analysis.

2.
Int J Nanomedicine ; 15: 7775-7789, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33116500

RESUMEN

PURPOSE: Several scaffolds and cell sources are being investigated for cartilage regeneration. The aim of the study was to prepare nanocellulose-based thermosensitive injectable hydrogel scaffolds and assess their potential as 3D scaffolds allowing the chondrogenic differentiation of embedded human dental pulp stem and progenitor cells (hDPSCs). MATERIALS AND METHODS: The hydrogel-forming solutions were prepared by adding ß-glycerophosphate (GP) to chitosan (CS) at different ratios. Nanocellulose (NC) suspension was produced from hemp hurd then added dropwise to the CS/GP mixture. In vitro characterization of the prepared hydrogels involved optimizing gelation and degradation time, mass-swelling ratio, and rheological properties. The hydrogel with optimal characteristics, NC-CS/GP-21, was selected for further investigation including assessment of biocompatibility. The chondrogenesis ability of hDPSCs embedded in NC-CS/GP-21 hydrogel was investigated in vitro and compared to that of bone marrow-derived mesenchymal stem cells (BMSCs), then was confirmed in vivo in 12 adult Sprague Dawley rats. RESULTS: The selected hydrogel showed stability in culture media, had a gelation time of 2.8 minutes, showed a highly porous microstructure by scanning electron microscope, and was morphologically intact in vivo for 14 days after injection. Histological and immunohistochemical analyses and real-time PCR confirmed the chondrogenesis ability of hDPSCs embedded in NC-CS/GP-21 hydrogel. CONCLUSION: Our results suggest that nanocellulose-chitosan thermosensitive hydrogel is a biocompatible, injectable, mechanically stable and slowly degradable scaffold. hDPSCs embedded in NC-CS/GP-21 hydrogel is a promising, minimally invasive, stem cell-based strategy for cartilage regeneration.


Asunto(s)
Cartílago/fisiología , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Pulpa Dental/citología , Hidrogeles/farmacología , Regeneración/efectos de los fármacos , Células Madre/citología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cartílago/citología , Cartílago/efectos de los fármacos , Celulosa/química , Quitosano/química , Humanos , Hidrogeles/química , Porosidad , Ratas , Ratas Sprague-Dawley , Células Madre/efectos de los fármacos , Andamios del Tejido/química
3.
Sci Prog ; 103(4): 36850420959876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33063650

RESUMEN

Major distresses such as rutting, fatigue, and thermal cracking are facing asphalt pavement structures due to continuous heavy traffic loading and climate change. The modification of asphalt binders (one of the main components of the asphalt paving mix) has the potential to mitigate distresses through using different additives. Polymer modified asphalt (PMA) binders showed a noticeable resistance to pavement distresses as reported in previous studies. The present study aims to evaluate the effect of polymer modification on the rheological properties of asphalt binders through laboratory tests. The polymers included styrene-butadiene-styrene (SBS) and epolene emulsifiable (EE2) types. The 60/70 binder was used as a control for comparison. The Mechanistic-Empirical Pavement Design Guide (MEPDG) was also utilized to simulate the effect of PMA binders on the rheological properties under different climatic conditions and structural capacities. Additionally, the MEPDG was further utilized to compare the effect of asphalt binders on rheological properties using four different binder input levels. Findings of the study showed that laboratory tests experienced varying outcomes regarding the most efficient asphalt binder by means of distresses resistance. However, the MEPDG evaluation showed that the overall ranking of asphalt binders positively impacting the rheological properties was as following: (1) 4.5% EE2 PMA, (2) 4% EE2 PMA, (3) 60/70 binder, (4) 5% SBS PMA, and (5) 4% SBS PMA binders. Furthermore, statistical analysis illustrated that the effect of using different binder input levels on the performance of pavement varied relatively to the evaluated distresses. The analysis showed that using different binder input levels would affect, to a certain extent, the asphalt binder influence on rheological properties only when evaluating rutting and fatigue distresses. Therefore, it is recommended that precise asphalt binder inputs, that is, shear complex modulus (G*) and phase angle (δ) are used when designing pavement structures in regions with hot and mild climate conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA