Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cardiovasc Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836637

RESUMEN

AIM: Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation, is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS: Here we show that chemical modulation of Histone Acetyl Transferases (HATs; by IQ-1) and WNT (by CHIR99021), synergistically enable the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules removal SCPs resume proliferation and concomitant NKX2-5 upregulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNAseq-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field (pSHF) of mouse hearts, hallmarked by NR2F2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated Retinoic Acid (RA) and BMP signaling is governing SCPs transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behavior. CONCLUSION: The chemically defined and reversible nature our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.

3.
Mol Ther Nucleic Acids ; 35(1): 102123, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38333672

RESUMEN

Gene variants in LZTR1 are implicated to cause Noonan syndrome associated with a severe and early-onset hypertrophic cardiomyopathy. Mechanistically, LZTR1 deficiency results in accumulation of RAS GTPases and, as a consequence, in RAS-MAPK signaling hyperactivity, thereby causing the Noonan syndrome-associated phenotype. Despite its epidemiological relevance, pharmacological as well as invasive therapies remain limited. Here, personalized CRISPR-Cas9 gene therapies might offer a novel alternative for a curative treatment in this patient cohort. In this study, by utilizing a patient-specific screening platform based on iPSC-derived cardiomyocytes from two Noonan syndrome patients, we evaluated different clinically translatable therapeutic approaches using small Cas9 orthologs targeting a deep-intronic LZTR1 variant to cure the disease-associated molecular pathology. Despite high editing efficiencies in cardiomyocyte cultures transduced with lentivirus or all-in-one adeno-associated viruses, we observed crucial differences in editing outcomes in proliferative iPSCs vs. non-proliferative cardiomyocytes. While editing in iPSCs rescued the phenotype, the same editing approaches did not robustly restore LZTR1 function in cardiomyocytes, indicating critical differences in the activity of DNA double-strand break repair mechanisms between proliferative and non-proliferative cell types and highlighting the importance of cell type-specific screens for testing CRISPR-Cas9 gene therapies.

4.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762130

RESUMEN

The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Ratas , Ratones , Animales , Ratas Wistar , Insuficiencia Cardíaca/genética , Miocitos Cardíacos , Reacción en Cadena de la Polimerasa , Hipertrofia
5.
Stem Cell Res ; 71: 103163, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37433260

RESUMEN

Towards increasing the possibility for temporal control of gene expression using CRISPR activation (a) systems, we generated homozygous human induced pluripotent stem cell (hiPSC) lines carrying a doxycycline (dox)-inducible guide(g)-RNA construct targeting the SHISA3 transciptional start site, as proof-of-principle, or a non targeting gRNA as a control. The dox-inducible gRNA cassette was inserted into the human ROSA26 locus in a line with dCas9VPR integrated at the AAVS1 locus (CRISPRa/Tet-iSHISA3). Pluripotency, genomic integrity and differentiation potential into all three germ layers were maintained. Dox-dependent gene induction was validated in hiPSCs as well as derived fibroblasts. These lines provide an attractive tool for cellular reprogramming in hiPSC-derived cells in a timely controlled manner.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fibroblastos/metabolismo , Reprogramación Celular , Tetraciclina/farmacología , Tetraciclina/metabolismo , Diferenciación Celular/genética , Antibacterianos , Doxiciclina/farmacología
6.
Eur Heart J Open ; 3(2): oead034, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37090057

RESUMEN

Aims: Although the share of women in cardiology in Germany is growing steadily, this does not translate into leadership positions. Medical societies play a crucial role in shaping the national and international medical and scientific environment. The German Cardiac Society (DGK) aims to serve the public discourse on gender-equity by systematic analysis of data on gender representation within the society and in Germany. Methods and results: We present gender disaggregated data collection of members, official organs, working groups, scientific meetings, as well as awards of the DGK based on anonymized exports from the DGK office as well as on data gathered from the DGK web page. From 2000 to 2020, the overall number of DGK members as well as the share of women increased (12.5% to 25.3%). In 2021, the share of women ranged from 40% to 50% in earlier career stages but was substantially lower at senior levels (23.9% of consulting/attending physicians, 7.1% of physicians-in-chief, 3.4% of directors). The share of women serving in DGK working groups had gained overall proportionality, but nuclei and speaker positions were largely held by men. Boards and project groups were predominantly represented by men as well. At the DGK-led scientific meetings, women contributed more often in junior relative to (invited) senior roles. Conclusion: Increasing numbers of women in cardiology and in the DGK over the past 20 years did not translate into the respective increase in representation of women in leadership positions. There is an urgent need to identify and, more importantly, to overcome barriers towards gender equity. Transparent presentation of society-related data is the first step for future targeted actions in this regard.

7.
Commun Biol ; 6(1): 79, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681760

RESUMEN

Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (ß-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of ß-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from ß-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Ratones , Humanos , Animales , Miocitos Cardíacos/metabolismo , Proteostasis , Proteómica , Transcriptoma , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilación de la Expresión Génica
8.
Methods Mol Biol ; 2573: 53-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040586

RESUMEN

Endogenous gene activation by programmable transcription factors offers gene-dose-dependent phenotyping of target cells embedded in their in vivo natural tissue environment. Modified CRISPR/Cas9 systems were developed to be used as guide (g) RNA programmable transcriptional activation platforms (CRISPRa) in vitro and in vivo allowing targeted or multiplexed gene activation studies. We specifically developed these tools to be applied in cardiomyocytes providing dCas9VPR expressing mice under the control of the Myosin heavy chain 6 (Myh6) promoter. Here, we describe a protocol for the efficient design and validation of newly identified gRNA for enhancing transcriptional activity of a selected gene of interest. Additionally, we are providing insights into a downstream application in a dCas9VPR expressing mouse model specifically for cardiomyocyte biology.


Asunto(s)
Sistemas CRISPR-Cas , Miocitos Cardíacos , Animales , Sistemas CRISPR-Cas/genética , Ratones , ARN Guía de Kinetoplastida/genética , Factores de Transcripción/genética , Activación Transcripcional
9.
Front Cell Dev Biol ; 10: 860005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433670

RESUMEN

Exosomes are small bi-lipid membranous vesicles (30-150 nm) containing different biological material such as proteins, lipids and nucleic acid. These small vesicles, inducing a cell to cell signaling pathway, are able to mediate multidirectional crosstalk to maintain homeostasis or modulate disease processes. With their various contents, exosomes sort and transfer specific information from their origin to a recipient cell, from a tissue or organ in the close proximity or at distance, generating an intra-inter tissue or organ communication. In the last decade exosomes have been identified in multiple organs and fluids under different pathological conditions. In particular, while the content and the abundance of exosome is now a diagnostic marker for cardiovascular diseases, their role in context-specific physiological and pathophysiological conditions in the cardiovascular system remains largely unknown. We summarize here the current knowledge on the role of exosomes as mediators of cardiovascular diseases in several pathophysiological conditions such as atherosclerosis and diabetes. In addition, we describe evidence of intercellular connection among multiple cell type (cardiac, vasculature, immune cells) as well as the challenge of their in vivo analysis.

10.
Sci Rep ; 12(1): 4091, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260714

RESUMEN

Single cell multi-omics analysis has the potential to yield a comprehensive understanding of the cellular events that underlie the basis of human diseases. The cardinal feature to access this information is the technology used for single-cell isolation, barcoding, and sequencing. Most currently used single-cell RNA-sequencing platforms have limitations in several areas including cell selection, documentation and library chemistry. In this study, we describe a novel high-throughput, full-length, single-cell RNA-sequencing approach that combines the CellenONE isolation and sorting system with the ICELL8 processing instrument. This method offers substantial improvements in single cell selection, documentation and capturing rate. Moreover, it allows the use of flexible chemistry for library preparations and the analysis of living or fixed cells, whole cells independent of sizing and morphology, as well as of nuclei. We applied this method to dermal fibroblasts derived from six patients with different segmental progeria syndromes and defined phenotype associated pathway signatures with variant associated expression modifiers. These results validate the applicability of our method to highlight genotype-expression relationships for molecular phenotyping of individual cells derived from human patients.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Envejecimiento , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Fenotipo , ARN , Análisis de la Célula Individual/métodos
11.
Dev Dyn ; 251(5): 877-884, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34719815

RESUMEN

BACKGROUND: Fibroblast growth factors (Fgfs) are required for survival and organ formation during embryogenesis. Fgfs often execute their functions redundantly. Previous analysis of Fgf3 mutants revealed effects on inner ear formation and embryonic survival with incomplete penetrance. RESULTS: Here, we show that presence of a neomycin resistance gene (neo) replacing the Fgf3 coding region leads to reduced survival during embryogenesis and an increased penetrance of inner ear defects. Fgf3neo/neo mutants showed reduced expression of Fgf4, which is positioned in close proximity to the Fgf3 locus in the mouse genome. Conditional inactivation of Fgf4 during inner ear development on a Fgf3 null background using Fgf3/4 cis mice revealed a redundant requirement between these Fgfs during otic placode induction. In contrast, inactivation of Fgf3 and Fgf4 in the pharyngeal region where both Fgfs are also co-expressed using a Foxg1-Cre driver did not affect development of the pharyngeal arches. However, these mutants showed reduced perinatal survival. CONCLUSIONS: These results highlight the importance of Fgf signaling during development. In particular, different members of the Fgf family act redundantly to guarantee inner ear formation and embryonic survival.


Asunto(s)
Oído Interno , Factores de Crecimiento de Fibroblastos , Animales , Ectodermo/metabolismo , Femenino , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 4 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/genética , Ratones , Familia de Multigenes , Proteínas del Tejido Nervioso/genética , Embarazo
12.
Stem Cell Res ; 56: 102518, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481190

RESUMEN

CRISPR/Cas9 technology based on nuclease inactive dCas9 and fused to the heterotrimeric VPR transcriptional activator is a powerful tool to enhance endogenous transcription by targeting defined genomic loci. We generated homozygous human induced pluripotent stem cell (hiPSC) lines carrying dCas9 fused to VPR along with a WPRE element at the AAVS1 locus (CRISPRa2). We demonstrated pluripotency, genomic integrity and differentiation potential into all three germ layers. CRISPRa2 cells showed increased transgene expression and higher transcriptional induction in hiPSC-derived cardiomyocytes compared to a previously described CRISPRa line. Both lines allow studying endogenous transcriptional modulation with lower and higher transcript abundance.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Endonucleasas , Humanos , Activación Transcripcional , Transgenes
13.
Science ; 373(6562): 1537-1540, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34554778

RESUMEN

Cardiomyocyte (CM) replacement is very slow in adult mammalian hearts, preventing regeneration of damaged myocardium. By contrast, fetal hearts display considerable regenerative potential owing to the presence of less mature CMs that still have the ability to proliferate. In this study, we demonstrate that heart-specific expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) induces adult CMs to dedifferentiate, conferring regenerative capacity to adult hearts. Transient, CM-specific expression of OSKM extends the regenerative window for postnatal mouse hearts and induces a gene expression program in adult CMs that resembles that of fetal CMs. Extended expression of OSKM in CMs leads to cellular reprogramming and heart tumor formation. Short-term OSKM expression before and during myocardial infarction ameliorates myocardial damage and improves cardiac function, demonstrating that temporally controlled dedifferentiation and reprogramming enable cell cycle reentry of mammalian CMs and facilitate heart regeneration.


Asunto(s)
Reprogramación Celular , Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración , Actinas/genética , Actinas/metabolismo , Animales , Desdiferenciación Celular , Proliferación Celular , Doxiciclina/farmacología , Expresión Génica , Corazón/embriología , Neoplasias Cardíacas/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Mitosis , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
14.
Stud Health Technol Inform ; 283: 59-68, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34545820

RESUMEN

INTRODUCTION: Ensuring scientific reproducibility and compliance with documentation guidelines of funding bodies and journals is a topic of greatly increasing importance in biomedical research. Failure to comply, or unawareness of documentation standards can have adverse effects on the translation of research into patient treatments, as well as economic implications. In the context of the German Research Foundation-funded collaborative research center (CRC) 1002, an IT-infrastructure sub-project was designed. Its goal has been to establish standardized metadata documentation and information exchange benefitting the participating research groups with minimal additional documentation efforts. METHODS: Implementation of the self-developed menoci-based research data platform (RDP) was driven by close communication and collaboration with researchers as early adopters and experts. Requirements analysis and concept development involved in person observation of experimental procedures, interviews and collaboration with researchers and experts, as well as the investigation of available and applicable metadata standards and tools. The Drupal-based RDP features distinct modules for the different documented data and workflow types, and both the development and the types of collected metadata were continuously reviewed and evaluated with the early adopters. RESULTS: The menoci-based RDP allows for standardized documentation, sharing and cross-referencing of different data types, workflows, and scientific publications. Different modules have been implemented for specific data types and workflows, allowing for the enrichment of entries with specific metadata and linking to further relevant entries in different modules. DISCUSSION: Taking the workflows and datasets of the frequently involved experimental service projects as a starting point for (meta-)data types to overcome irreproducibility of research data, results in increased benefits for researchers with minimized efforts. While the menoci-based RDP with its data models and metadata schema was originally developed in a cardiological context, it has been implemented and extended to other consortia at GÃuttingen Campus and beyond in different life science research areas.


Asunto(s)
Investigación Biomédica , Metadatos , Documentación , Humanos , Reproducibilidad de los Resultados , Flujo de Trabajo
15.
Stem Cell Res ; 55: 102473, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343828

RESUMEN

Using nuclease-deficient dead (d)Cas9 without enzymatic activity fused to transcriptional inhibitors (CRISPRi) allows for transcriptional interference and results in a powerful tool for the elucidation of developmental, homeostatic and disease mechanisms. We inserted dCas9KRAB (CRISPRi) cassette into the AAVS1 locus of hiPSC lines, which resulted in homozygous knock-in with an otherwise unaltered genome. Expression of dCas9KRAB protein, pluripotency and the ability to differentiate into all three embryonic germ layers were validated. Furthermore, functional cardiomyocyte generation was tested. The hiPSC-CRISPRi cell lines offer a valuable tool for studying endogenous transcriptional repression with single and multiplexed possibilities in all human cell types.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Endonucleasas , Expresión Génica , Homocigoto , Humanos
16.
Cells ; 10(4)2021 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801779

RESUMEN

The Rho guanine nucleotide exchange factor RhoGEF17 was described to reside in adherens junctions (AJ) in endothelial cells (EC) and to play a critical role in the regulation of cell adhesion and barrier function. The purpose of this study was to analyze signal cascades and processes occurring subsequent to AJ disruption induced by RhoGEF17 knockdown. Primary human and immortalized rat EC were used to demonstrate that an adenoviral-mediated knockdown of RhoGEF17 resulted in cell rounding and an impairment in spheroid formation due to an enhanced proteasomal degradation of AJ components. In contrast, ß-catenin degradation was impaired, which resulted in an induction of the ß-catenin-target genes cyclin D1 and survivin. RhoGEF17 depletion additionally inhibited cell adhesion and sheet migration. The RhoGEF17 knockdown prevented the cells with impeded cell-cell and cell-matrix contacts from apoptosis, which was in line with a reduction in pro-caspase 3 expression and an increase in Akt phosphorylation. Nevertheless, the cells were not able to proliferate as a cell cycle block occurred. In summary, we demonstrate that a loss of RhoGEF17 disturbs cell-cell and cell-substrate interaction in EC. Moreover, it prevents the EC from cell death and blocks cell proliferation. Non-canonical ß-catenin signaling and Akt activation could be identified as a potential mechanism.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Uniones Adherentes/metabolismo , Animales , Apoptosis , Adhesión Celular , Puntos de Control del Ciclo Celular , Muerte Celular , Movimiento Celular , Proliferación Celular , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas , beta Catenina/metabolismo
17.
Front Cardiovasc Med ; 8: 783072, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35097003

RESUMEN

Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.

18.
Cardiovasc Res ; 117(8): 1908-1922, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32777030

RESUMEN

AIMS: Arrhythmias and sudden cardiac death (SCD) occur commonly in patients with heart failure. We found T-box 5 (TBX5) dysregulated in ventricular myocardium from heart failure patients and thus we hypothesized that TBX5 reduction contributes to arrhythmia development in these patients. To understand the underlying mechanisms, we aimed to reveal the ventricular TBX5-dependent transcriptional network and further test the therapeutic potential of TBX5 level normalization in mice with documented arrhythmias. METHODS AND RESULTS: We used a mouse model of TBX5 conditional deletion in ventricular cardiomyocytes. Ventricular (v) TBX5 loss in mice resulted in mild cardiac dysfunction and arrhythmias and was associated with a high mortality rate (60%) due to SCD. Upon angiotensin stimulation, vTbx5KO mice showed exacerbated cardiac remodelling and dysfunction suggesting a cardioprotective role of TBX5. RNA-sequencing of a ventricular-specific TBX5KO mouse and TBX5 chromatin immunoprecipitation was used to dissect TBX5 transcriptional network in cardiac ventricular tissue. Overall, we identified 47 transcripts expressed under the control of TBX5, which may have contributed to the fatal arrhythmias in vTbx5KO mice. These included transcripts encoding for proteins implicated in cardiac conduction and contraction (Gja1, Kcnj5, Kcng2, Cacna1g, Chrm2), in cytoskeleton organization (Fstl4, Pdlim4, Emilin2, Cmya5), and cardiac protection upon stress (Fhl2, Gpr22, Fgf16). Interestingly, after TBX5 loss and arrhythmia development in vTbx5KO mice, TBX5 protein-level normalization by systemic adeno-associated-virus (AAV) 9 application, re-established TBX5-dependent transcriptome. Consequently, cardiac dysfunction was ameliorated and the propensity of arrhythmia occurrence was reduced. CONCLUSIONS: This study uncovers a novel cardioprotective role of TBX5 in the adult heart and provides preclinical evidence for the therapeutic value of TBX5 protein normalization in the control of arrhythmia.


Asunto(s)
Arritmias Cardíacas/prevención & control , Muerte Súbita Cardíaca/prevención & control , Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/terapia , Proteínas de Dominio T Box/metabolismo , Disfunción Ventricular Izquierda/terapia , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Secuenciación de Inmunoprecipitación de Cromatina , Muerte Súbita Cardíaca/etiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Terapia Genética , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq , Proteínas de Dominio T Box/genética , Transcripción Genética , Transcriptoma , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda , Remodelación Ventricular
19.
Stem Cell Res ; 48: 101944, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33038615

RESUMEN

CRISPR/Cas9 technology is a powerful tool, owing to its robust on-target activity and high fidelity. Mutated Cas9 without nuclease activity (dCas9) fused to transcriptional modulators, can function as transcriptional inhibitors or activators (CRISPRa). We generated homozygous human induced pluripotent stem cell (hiPSC) lines with an inserted CRISPRa cassette into the AAVS1 locus whilst maintaining pluripotency and genomic integrity, the ability to differentiate into all three germ layers, generate functional cardiomyocytes, and validated Cas9-mediated induction of endogenous gene expression. Our generated hiPSC-CRISPRa offers a valuable tool for studying endogenous transcriptional modulation with single and multiplexed possibilities in all human cell types.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Homocigoto , Humanos , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA