Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Anim Behav ; 104: 203-212, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25983335

RESUMEN

In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in reproductive organ mass and neuroendocrine traits related to fertility. We tested whether males from two divergent selection lines, one that strongly suppresses fertility under short photoperiod (responder) and one that weakly suppresses fertility under short photoperiod (nonresponder), also differ in photoperiod-dependent sexual behaviour and responses to female olfactory cues. Under short, but not long, photoperiod, there were significant differences between responder and nonresponder males in sexual behaviour and likelihood of inseminating a female. Males that were severely oligospermic or azoospermic under short photoperiod failed to display sexual behaviour in response to an ovariectomized and hormonally primed receptive female. However, on the day following testing, females were positive for spermatozoa only when paired with a male having a sperm count in the normal range for males under long photoperiod. Males from the nonresponder line showed accelerated reproductive development under short photoperiod in response to urine-soiled bedding from females, but males from the responder line did not. The results indicate genetic variation in sexual behaviour that is expressed under short, but not long, photoperiod, and indicate a potential link between heritable neuroendocrine variation and male sexual behaviour. In winter in a natural population, this heritable behavioural variation could affect fitness, seasonal life history trade-offs and population growth.

2.
J Neurosci ; 29(11): 3343-53, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19295141

RESUMEN

After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of N(CCAP), a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally sensitive decision network to a command-like network that initiates a fixed action pattern. Because N(CCAP) mediates environmentally insensitive ecdysis-related behaviors in Drosophila development before adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop.


Asunto(s)
Conducta de Elección/fisiología , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuropéptidos/fisiología , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Animales , Toma de Decisiones/fisiología , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Ambiente , Marcación de Gen , Hormonas de Invertebrados/metabolismo , Red Nerviosa/fisiología , Ratas , Canales Catiónicos TRPM/biosíntesis
3.
J Neurosci ; 26(2): 479-89, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16407545

RESUMEN

Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit.


Asunto(s)
Conducta Animal/fisiología , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Neuronas/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Encéfalo/citología , Encéfalo/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Potenciales de la Membrana , Datos de Secuencia Molecular , Actividad Motora/fisiología , Neuropéptidos/fisiología , Oocitos , Mutación Puntual , Canales de Potasio/genética , Canales de Potasio/fisiología , Proteínas Recombinantes de Fusión/fisiología , Método Simple Ciego , Canales de Sodio/genética , Canales de Sodio/fisiología , Xenopus laevis
4.
J Neurosci ; 26(2): 573-84, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16407556

RESUMEN

A subset of Drosophila neurons that expresses crustacean cardioactive peptide (CCAP) has been shown previously to make the hormone bursicon, which is required for cuticle tanning and wing expansion after eclosion. Here we present evidence that CCAP-expressing neurons (NCCAP) consist of two functionally distinct groups, one of which releases bursicon into the hemolymph and the other of which regulates its release. The first group, which we call NCCAP-c929, includes 14 bursicon-expressing neurons of the abdominal ganglion that lie within the expression pattern of the enhancer-trap line c929-Gal4. We show that suppression of activity within this group blocks bursicon release into the hemolymph together with tanning and wing expansion. The second group, which we call NCCAP-R, consists of NCCAP neurons outside the c929-Gal4 pattern. Because suppression of synaptic transmission and protein kinase A (PKA) activity throughout NCCAP, but not in NCCAP-c929, also blocks tanning and wing expansion, we conclude that neurotransmission and PKA are required in NCCAP-R to regulate bursicon secretion from NCCAP-c929. Enhancement of electrical activity in NCCAP-R by expression of the bacterial sodium channel NaChBac also blocks tanning and wing expansion and leads to depletion of bursicon from central processes. NaChBac expression in NCCAP-c929 is without effect, suggesting that the abdominal bursicon-secreting neurons are likely to be silent until stimulated to release the hormone. Our results suggest that NCCAP form an interacting neuronal network responsible for the regulation and release of bursicon and suggest a model in which PKA-mediated stimulation of inputs to normally quiescent bursicon-expressing neurons activates release of the hormone.


Asunto(s)
Drosophila melanogaster/fisiología , Hormonas de Invertebrados/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Neuropéptidos/análisis , Alas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Electrorretinografía , Ganglios de Invertebrados/citología , Marcación de Gen , Neuronas/metabolismo , Fenotipo , Pigmentación , Proteínas Recombinantes de Fusión/fisiología , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/fisiología , Canales de Sodio/fisiología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA