Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Lipid Res ; 64(12): 100466, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918524

RESUMEN

The Wsc1, Wsc2, and Wsc3 proteins are essential cell surface sensors that respond to cell wall perturbation by activating the cell wall integrity pathway (CWIP). We show here that in situ production of cholesterol (in place of ergosterol) induces hyper-phosphorylation of Slt2, the MAPK of the CWIP, and upregulates cell wall biosynthesis. Deletion of all three Wsc genes in K. phaffii reverts these phenotypes. In the cholesterol-producing strain, both Wsc1 and Wsc3 accumulate in the plasma membrane. Close inspection of the transmembrane domains of all three Wsc proteins predicted by AlphaFold2 revealed the presence of CRAC sterol-binding motifs. Experiments using a photoreactive cholesterol derivative indicate intimate interaction of this sterol with the Wsc transmembrane domain, and this apparent sterol binding was abrogated in Wsc mutants with substitutions in the CRAC motif. We also observed cholesterol interaction with CRAC-like motifs in the transmembrane domains of mammalian integrins, analogs of Wsc proteins. Our results suggest that proper signaling of the Wsc sensors requires highly specific binding of the native endogenous terminal sterol, ergosterol.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Esteroles/metabolismo , Colesterol/metabolismo , Ergosterol/metabolismo
2.
Front Plant Sci ; 13: 872793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693160

RESUMEN

Short-term assessment of adverse effects is essential for populations exposed to higher risk of environmental pollution. This study presents the time course of physiological and morphological changes attributed to cadmium, emphasizing age-linked differences in the susceptibility of photosynthetic apparatus of Spirodela polyrhiza fronds exposed to different cadmium concentrations. A four-frond colony represented by mother, daughter, and granddaughter plants was exposed to cadmium concentrations for 6, 24, and 72 h to establish its effect on different generations of the great duckweed. The duration of cadmium exposure accounted for the most variation in chlorophyll content as the most influential variable, and after 72 h, frond responsiveness was a function of cadmium concentration. Carotenoid contents behaved slightly differently in fronds of different ages, with the oldest mother frond exhibiting accelerated senescence. Chlorophyll fluorescence measurements showed that cadmium affects different photosynthetic electron transport segments relative to the frond's chloroplast structure level. Photosynthesis of mother fronds exposed to low cadmium and daughter fronds exposed to high cadmium was determined by the functionality of primary electron acceptance at the PSII level. Mother plants exposed to higher cadmium concentrations were characterized by closed and inactive reaction centers, dissipated energy outflux, and inhibited photosynthesis. Young fronds exposed to low and high cadmium concentrations were characterized by increased non-reducing reaction centers and thermal phase reduction, with activated dissipative mechanisms at high cadmium concentrations. Cadmium-induced changes in the ultrastructure of chloroplasts were visible after 6 h of exposure to lowest concentrations, with gradual degradation of the thylakoid system as the fronds aged. Younger fronds responded to cadmium more dynamically through molecular, physiological, and anatomical changes and tolerated a more reduced electron transport chain under given conditions than older fronds.

3.
Planta ; 255(6): 118, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35522384

RESUMEN

MAIN CONCLUSION: Focused ion beam scanning electron microscopy is well suited for volumetric extractions and 3D reconstructions of plant cells and its organelles. The three-dimensional (3D) reconstruction of individual plant cells is an important tool to extract volumetric data of organelles and is necessary to fully understand ultrastructural changes and adaptations of plants to their environment. Methods such as the 3D reconstruction of cells based on light microscopical images often lack the resolution necessary to clearly reconstruct all cell compartments within a cell. The 3D reconstruction of cells through serial sectioning transmission electron microscopy (ssTEM) and focused ion beam scanning electron microscopy (FIB-SEM) are powerful alternatives but not widely used in plant sciences. Here, we present a method for the 3D reconstruction and volumetric extraction of plant cells based on FIB milling and compare the results with 3D reconstructions obtained with ssTEM. When compared to 3D reconstruction based on ssTEM, FIB-SEM delivered similar results. The data extracted in this study demonstrated that tobacco cells were larger (31410 µm3) than pumpkin cells (20697 µm3) and contained more chloroplasts (175 vs. 124), mitochondria (1317 vs. 291) and peroxisomes (745 vs. 79). While individual chloroplasts, mitochondria, peroxisomes were larger in pumpkin plants (25, 53, and 50%, respectively) they covered more total volume in tobacco plants (5390, 395, 374 µm3, respectively) due to their higher number per cell when compared to pumpkin plants (4762, 134, 59 µm3, respectively). While image acquisition with FIB-SEM was automated, software controlled, and less difficult than ssTEM, FIB milling was slower and sections could not be revised or re-imaged as they were destroyed by the ion beam. Nevertheless, the results in this study demonstrated that both, FIB-SEM and ssTEM, are powerful tools for the 3D reconstruction of and volumetric extraction from plant cells and that there were large differences in size, number, and organelle composition between pumpkin and tobacco cells.


Asunto(s)
Imagenología Tridimensional , Células Vegetales , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Hojas de la Planta
4.
Histochem Cell Biol ; 158(3): 213-227, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35486180

RESUMEN

Plant ascorbate and glutathione metabolism counteracts oxidative stress mediated, for example, by excess light. In this review, we discuss the properties of immunocytochemistry and transmission electron microscopy, redox-sensitive dyes or probes and bright-field microscopy, confocal microscopy or fluorescence microscopy for the visualization and quantification of glutathione at the cellular or subcellular level in plants and the quantification of glutathione from isolated organelles. In previous studies, we showed that subcellular ascorbate and glutathione levels in Arabidopsis are affected by high light stress. The use of light-emitting diodes (LEDs) is gaining increasing importance in growing indoor crops and ornamental plants. A combination of different LED types allows custom-made combinations of wavelengths and prevents damage related to high photon flux rates. In this review we provide an overview on how different light spectra and light intensities affect glutathione metabolism at the cellular and subcellular levels in plants. Findings obtained in our most recent study demonstrate that both light intensity and spectrum significantly affected glutathione metabolism in wheat at the transcriptional level and caused genotype-specific reactions in the investigated Arabidopsis lines.


Asunto(s)
Arabidopsis , Arabidopsis/química , Ácido Ascórbico , Glutatión/química , Glutatión/metabolismo , Orgánulos/metabolismo , Oxidación-Reducción , Plantas
5.
Protoplasma ; 258(6): 1201-1211, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33619654

RESUMEN

Two-dimensional ultrastructural changes of Tobacco mosaic virus (TMV) and Zucchini yellow mosaic virus (ZYMV) in tobacco and pumpkin plants, respectively, are well studied. To provide 3D data, representative control and infected cells were reconstructed using serial sectioning and transmission electron microscopy. Quantitative data of 3D ultrastructural changes were then extracted from the cytosol and organelles by image analysis. While TMV induced the accumulation of an average of 40 virus inclusion bodies in the cytosol, which covered about 13% of the cell volume, ZYMV caused the accumulation of an average of 1752 cylindrical inclusions in the cytosol, which covered about 2.7% of the total volume of the cell. TMV infection significantly decreased the number and size of mitochondria (- 49 and - 20%) and peroxisomes (- 62 and - 28%) of the reconstructed cell. The reconstructed ZYMV-infected cell contained more (105%) and larger (109%) mitochondria when compared to the control cell. While the reconstructed TMV-infected cell contained larger (20%) and the ZYMV-infected smaller (19%) chloroplasts, both contained less chloroplasts (- 40% for TMV and - 23% for ZYMV). In chloroplasts, the volume of starch and plastoglobules increased (664% and 150% for TMV and 1324% and 1300% for ZYMV) when compared to the control. The latter was correlated with a decrease in the volume of thylakoids in the reconstructed ZYMV-infected cell (- 31%) indicating that degradation products from thylakoids are transported and stored in plastoglobules. Summing up, the data collected in this study give a comprehensive overview of 3D changes induced by TMV and ZYMV in plants.


Asunto(s)
Cucurbita , Potyvirus , Virus del Mosaico del Tabaco , Enfermedades de las Plantas
6.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435361

RESUMEN

This study aimed to clarify whether the light condition-dependent changes in the redox state and subcellular distribution of glutathione were similar in the dicotyledonous model plant Arabidopsis (wild-type, ascorbate- and glutathione-deficient mutants) and the monocotyledonous crop species wheat (Chinese Spring variety). With increasing light intensity, the amount of its reduced (GSH) and oxidized (GSSG) form and the GSSG/GSH ratio increased in the leaf extracts of both species including all genotypes, while far-red light increased these parameters only in wheat except for GSH in the GSH-deficient Arabidopsis mutant. Based on the expression changes of the glutathione metabolism-related genes, light intensity influences the size and redox state of the glutathione pool at the transcriptional level in wheat but not in Arabidopsis. In line with the results in leaf extracts, a similar inducing effect of both light intensity and far-red light was found on the total glutathione content at the subcellular level in wheat. In contrast to the leaf extracts, the inducing influence of light intensity on glutathione level was only found in the cell compartments of the GSH-deficient Arabidopsis mutant, and far-red light increased it in both mutants. The observed general and genotype-specific, light-dependent changes in the accumulation and subcellular distribution of glutathione participate in adjusting the redox-dependent metabolism to the actual environmental conditions.


Asunto(s)
Arabidopsis/metabolismo , Glutatión/metabolismo , Triticum/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/ultraestructura , Regulación de la Expresión Génica de las Plantas , Glutatión/análisis , Glutatión/genética , Luz , Oxidación-Reducción , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Triticum/citología , Triticum/genética , Triticum/ultraestructura
7.
Ann Bot ; 117(7): 1141-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27091507

RESUMEN

BACKGROUND AND AIMS: Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis. Recent studies demonstrate that enzymes required for C4 photosynthesis are also active in the veins of C3 plants, and their vascular system contains photosynthetically competent parenchyma cells. However, our understanding of photosynthesis in veins of C3 and CAM plants still remains insufficient. Here spatial analysis of photosynthesis-related properties were applied to the midrib and the interveinal lamina cells in leaves of Mesembryanthemum crystallinum, a C3-CAM intermediate plant. METHODS: The midrib anatomy as well as chloroplast structure and chlorophyll fluorescence, diurnal gas exchange profiles, the immunoblot patterns of PEPC (phosphoenolpyruvate carboxylase) and RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), H2O2 localization and antioxidant enzyme activities were compared in the midrib and in the interveinal mesophyll cells in leaves of C3 and CAM plants. KEY RESULTS: Leaf midribs were structurally competent to perform photosynthesis in C3 and CAM plants. The midrib chloroplasts resembled those in the bundle sheath cells of C4 plants and were characterized by limited photosynthetic activity. CONCLUSIONS: The metabolic roles of midrib chloroplasts differ in C3 and CAM plants. It is suggested that in leaves of C3 plants the midrib chloroplasts could be involved in the supply of CO2 for carboxylation, and in CAM plants they could provide malate to different metabolic processes and mediate H2O2 signalling.


Asunto(s)
Mesembryanthemum/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Dióxido de Carbono/metabolismo , Catalasa/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Clorofila/química , Clorofila/metabolismo , Cloroplastos/ultraestructura , Glucanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Hojas de la Planta/citología , Ribulosa-Bifosfato Carboxilasa/metabolismo
9.
PLoS One ; 10(9): e0136957, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26327557

RESUMEN

In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.


Asunto(s)
Genes Fúngicos/genética , Metabolismo de los Lípidos/genética , Mutación/genética , Levaduras/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citidina Difosfato Colina/genética , Citidina Difosfato Colina/metabolismo , Ésteres/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Glucógeno/genética , Glucógeno/metabolismo , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismo , Levaduras/metabolismo
10.
BMC Biol ; 13: 80, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26400155

RESUMEN

BACKGROUND: Some yeasts have evolved a methylotrophic lifestyle enabling them to utilize the single carbon compound methanol as a carbon and energy source. Among them, Pichia pastoris (syn. Komagataella sp.) is frequently used for the production of heterologous proteins and also serves as a model organism for organelle research. Our current knowledge of methylotrophic lifestyle mainly derives from sophisticated biochemical studies which identified many key methanol utilization enzymes such as alcohol oxidase and dihydroxyacetone synthase and their localization to the peroxisomes. C1 assimilation is supposed to involve the pentose phosphate pathway, but details of these reactions are not known to date. RESULTS: In this work we analyzed the regulation patterns of 5,354 genes, 575 proteins, 141 metabolites, and fluxes through 39 reactions of P. pastoris comparing growth on glucose and on a methanol/glycerol mixed medium, respectively. Contrary to previous assumptions, we found that the entire methanol assimilation pathway is localized to peroxisomes rather than employing part of the cytosolic pentose phosphate pathway for xylulose-5-phosphate regeneration. For this purpose, P. pastoris (and presumably also other methylotrophic yeasts) have evolved a duplicated methanol inducible enzyme set targeted to peroxisomes. This compartmentalized cyclic C1 assimilation process termed xylose-monophosphate cycle resembles the principle of the Calvin cycle and uses sedoheptulose-1,7-bisphosphate as intermediate. The strong induction of alcohol oxidase, dihydroxyacetone synthase, formaldehyde and formate dehydrogenase, and catalase leads to high demand of their cofactors riboflavin, thiamine, nicotinamide, and heme, respectively, which is reflected in strong up-regulation of the respective synthesis pathways on methanol. Methanol-grown cells have a higher protein but lower free amino acid content, which can be attributed to the high drain towards methanol metabolic enzymes and their cofactors. In context with up-regulation of many amino acid biosynthesis genes or proteins, this visualizes an increased flux towards amino acid and protein synthesis which is reflected also in increased levels of transcripts and/or proteins related to ribosome biogenesis and translation. CONCLUSIONS: Taken together, our work illustrates how concerted interpretation of multiple levels of systems biology data can contribute to elucidation of yet unknown cellular pathways and revolutionize our understanding of cellular biology.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Glicerol/metabolismo , Metanol/metabolismo , Pichia/genética , Proteínas Fúngicas/metabolismo , Pichia/metabolismo
11.
PLoS One ; 10(8): e0135084, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26241051

RESUMEN

In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.


Asunto(s)
Peroxisomas/metabolismo , Fosfatidilcolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Citidina Difosfato Colina/metabolismo , Polarización de Fluorescencia , Proteínas Fúngicas/genética , Membranas Intracelulares/metabolismo , Fluidez de la Membrana , Metilación , Microscopía Electrónica , Microsomas/metabolismo , Mitocondrias/metabolismo , Mutación , Fosfolípidos/aislamiento & purificación , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Esteroles/metabolismo
13.
Biotechnol J ; 10(4): 623-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25641738

RESUMEN

Membrane-anchored cytochrome P450 enzymes (CYPs) are a versatile and interesting class of enzymes for industrial applications, as they are capable of regio- and stereoselectively hydroxylating hydrophobic molecules. However, CYP activity requires sufficient levels of suitable cytochrome P450 reductases (CPRs) for regeneration of catalytic capacity, which is a bottleneck in many industrial applications. Searching for positive effectors of membrane-anchored CYP/CPR function, we transformed and screened selected strains from a Saccharomyces cerevisiae knockout collection for Hyoscyamus muticus premnaspirodiene oxygenase (HPO; CYP) and Arabidopsis thaliana CPR (AtCPR) expression levels, as well as for activity towards (+)-valencene. We found that in cells lacking the type III membrane protein Ice2p, AtCPR was destabilized. Remarkably, over-expression of ICE2 improved (+)-valencene hydroxylation to trans-nootkatol by 40-50%, both in resting cells and in vivo. Time-resolved immunoblot analysis and cytochrome c reductase activity assays revealed that Ice2 up-regulation stabilized AtCPR levels and activity over extended periods of bioconversion. To underscore that we had identified a novel positive effector of recombinant CYP/CPR function, we confirmed the beneficial effect of ICE2 over-expression for two further CYP/CPR combinations and the alternative host Pichia pastoris. Thus, we propose Ice2 up-regulation as a general tool for improving the applications of recombinant CYPs in yeasts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Pichia/genética , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Sesquiterpenos/metabolismo , Regulación hacia Arriba/genética
14.
J Exp Bot ; 66(3): 863-78, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25392479

RESUMEN

Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.


Asunto(s)
Pared Celular/enzimología , Chenopodium/genética , Sequías , Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/fisiología , beta-Fructofuranosidasa/genética , Chenopodium/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Fotosíntesis , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , beta-Fructofuranosidasa/metabolismo
15.
Ann Bot ; 114(3): 463-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25096324

RESUMEN

BACKGROUND AND AIMS: The integrity and evolution of lichen symbioses depend on a fine-tuned combination of algal and fungal genotypes. Geographically widespread species complexes of lichenized fungi can occur in habitats with slightly varying ecological conditions, and it remains unclear how this variation correlates with symbiont selectivity patterns in lichens. In an attempt to address this question, >300 samples were taken of the globally distributed and ecologically variable lichen-forming species complex Tephromela atra, together with closely allied species, in order to study genetic diversity and the selectivity patterns of their photobionts. METHODS: Lichen thalli of T. atra and of closely related species T. grumosa, T. nashii and T. atrocaesia were collected from six continents, across 24 countries and 62 localities representing a wide range of habitats. Analyses of genetic diversity and phylogenetic relationships were carried out both for photobionts amplified directly from the lichen thalli and from those isolated in axenic cultures. Morphological and anatomical traits were studied with light and transmission electron microscopy in the isolated algal strains. KEY RESULTS: Tephromela fungal species were found to associate with 12 lineages of Trebouxia. Five new clades demonstrate the still-unrecognized genetic diversity of lichen algae. Culturable, undescribed lineages were also characterized by phenotypic traits. Strong selectivity of the mycobionts for the photobionts was observed in six monophyletic Tephromela clades. Seven Trebouxia lineages were detected in the poorly resolved lineage T. atra sensu lato, where co-occurrence of multiple photobiont lineages in single thalli was repeatedly observed. CONCLUSIONS: Low selectivity apparently allows widespread lichen-forming fungi to establish successful symbioses with locally adapted photobionts in a broader range of habitats. This flexibility might correlate with both lower phylogenetic resolution and evolutionary divergence in species complexes of crustose lichen-forming fungi.


Asunto(s)
Evolución Biológica , Chlorophyta/genética , Ecosistema , Simbiosis , Proteínas Algáceas/genética , Ascomicetos/fisiología , Chlorophyta/fisiología , ADN de Algas/genética , ADN Intergénico/genética , Datos de Secuencia Molecular , Filogenia , Polimorfismo Conformacional Retorcido-Simple , Análisis de Secuencia de ADN
16.
Biochim Biophys Acta ; 1842(10): 1393-402, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25016085

RESUMEN

Tgl3p, Tgl4p and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae catalyzing degradation of triacylglycerols stored in lipid droplets. Previous results from our laboratory (Athenstaedt and Daum, 2005, J. Biol. Chem. 280, 37301-37309) demonstrated that a yeast strain lacking all three triacylglycerol lipases accumulates not only triacylglycerols at high amount, but also steryl esters. Here we show a metabolic link between synthesis and mobilization of non-polar lipids. In particular, we demonstrate that a block in tri-acylglycerol degradation in a tgl3∆tgl4∆tgl5∆ triple mutant lacking all major triacylglycerol lipases causes marked changes in non-polar lipid synthesis. Under these conditions formation of triacylglycerols is reduced, whereas steryl ester synthesis is enhanced as shown by quantification of non-polar lipids, in vivo labeling of lipids using [(14)C]oleic acid and [(14)C]acetic acid as precursors, and enzyme analyses in vitro. In summary, this study demonstrates that triacylglycerol metabolism and steryl ester metabolism are linked processes. The importance of balanced storage and degradation of these components for lipid homeostasis in the yeast is highlighted.

17.
Metab Eng ; 24: 18-29, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24747046

RESUMEN

The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources.


Asunto(s)
Proteínas de Arabidopsis , Ingeniería Metabólica , Pichia , Sesquiterpenos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Cupressus/enzimología , Cupressus/genética , Hyoscyamus/enzimología , Hyoscyamus/genética , Pichia/enzimología , Pichia/genética , Sesquiterpenos Policíclicos
18.
Biochim Biophys Acta ; 1838(7): 1889-97, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24680652

RESUMEN

Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.


Asunto(s)
Membrana Celular/metabolismo , Pichia/metabolismo , Ergosterol/metabolismo , Ácidos Grasos/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Esteroles/metabolismo
19.
J Struct Biol ; 186(2): 245-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24631670

RESUMEN

Infection of plants by Zucchini Yellow Mosaic Virus (ZYMV) induces severe ultrastructural changes. The aim of this study was to investigate ultrastructural changes during ZYMV-infection in Cucurbita pepo L. plants on the two and three dimensional (2D and 3D) level and to correlate these changes with the spread of ZYMV throughout the plant by transmission electron microscopy (TEM) and image analysis. This study revealed that after inoculation of the cotyledons ZYMV moved into roots [3 days post inoculation (dpi)], then moved upwards into the stem and apical meristem (5 dpi), then into the first true leaf (7 dpi) and could finally be found in all plant parts (9 dpi). ZYMV-infected cells contained viral inclusion bodies in the form of cylindrical inclusions (CIs). These CIs occurred in four different forms throughout the cytosol of roots and leaves: scrolls and pinwheels when cut transversely and long tubular structures and bundles of filaments when cut longitudinally. 3D reconstruction of ZYMV-infected cells containing scrolls revealed that they form long tubes throughout the cytosol. The majority has a preferred orientation and an average length and width of 3 µm and 120 nm, respectively. Image analysis revealed an increased size of cells and vacuoles (107% and 447%, respectively) in younger ZYMV-infected leaves leading to a similar ratio of cytoplasm to vacuole (about 1:1) in older and younger ZYMV-infected leaves which indicates advanced cell growth in younger tissues. The collected data advances the current knowledge about ZYMV-induced ultrastructural changes in Cucurbita pepo.


Asunto(s)
Cucurbita/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Enfermedades de las Plantas/virología , Estructuras de las Plantas/virología , Potyvirus/fisiología , Cucurbita/virología , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Tropismo Viral/fisiología
20.
Microscopy (Oxf) ; 62(5): 547-53, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23580761

RESUMEN

Immunoelectron microscopy is a powerful method to diagnose viral diseases and to study the distribution of the viral agent within plant cells and tissues. Nevertheless, current protocols for the immunological detection of viral diseases with transmission electron microscopy (TEM) in plants take between 3 and 6 days and are therefore not suited for rapid diagnosis of virus diseases in plants. In this study, we describe a method that allows rapid cytohistochemical detection of tobacco mosaic virus (TMV) in leaves of tobacco plants. With the help of microwave irradiation, sample preparation of the leaves was reduced to 90 min. After sample sectioning, virus particles were stained on the sections by immunogold labelling of the viral coat protein, which took 100 min. After investigation with the TEM, a clear visualization of TMV in tobacco cells was achieved altogether in about half a day. Comparison of gold particle density by image analysis revealed that samples prepared with the help of microwave irradiation yielded significantly higher gold particle density as samples prepared conventionally at room temperature. This study clearly demonstrates that microwave-assisted plant sample preparation in combination with cytohistochemical localization of viral coat protein is well suited for rapid diagnosis of plant virus diseases in altogether about half a day by TEM.


Asunto(s)
Inmunohistoquímica/métodos , Hojas de la Planta/virología , Virus del Mosaico del Tabaco , Microscopía Electrónica de Transmisión/métodos , Microscopía Inmunoelectrónica , Microondas , Enfermedades de las Plantas/virología , Nicotiana/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA