Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Chaos ; 34(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39236107

RESUMEN

Link prediction has a wide range of applications in the study of complex networks, and the current research on link prediction based on single-layer networks has achieved fruitful results, while link prediction methods for multilayer networks have to be further developed. Existing research on link prediction for multilayer networks mainly focuses on multiplexed networks with homogeneous nodes and heterogeneous edges, while there are relatively few studies on general multilayer networks with heterogeneous nodes and edges. In this context, this paper proposes a method for heterogeneous multilayer networks based on motifs for link prediction. The method considers not only the effect of heterogeneity of edges on network links but also the effect of heterogeneous and homogeneous nodes on the existence of links between nodes. In addition, we use the role function of nodes to measure the contribution of nodes to form the motifs with links in different layers of the network, thus enabling the prediction of intra- and inter-layer links on heterogeneous multilayer networks. Finally, we apply the method to several empirical networks and find that our method has better link prediction performance than several other link prediction methods on multilayer networks.

2.
IEEE Trans Comput Soc Syst ; 11(1): 247-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39239536

RESUMEN

Adaptive interpretable ensemble model based on three-dimensional Convolutional Neural Network (3DCNN) and Genetic Algorithm (GA), i.e., 3DCNN+EL+GA, was proposed to differentiate the subjects with Alzheimer's Disease (AD) or Mild Cognitive Impairment (MCI) and further identify the discriminative brain regions significantly contributing to the classifications in a data-driven way. Plus, the discriminative brain sub-regions at a voxel level were further located in these achieved brain regions, with a gradient-based attribution method designed for CNN. Besides disclosing the discriminative brain sub-regions, the testing results on the datasets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Open Access Series of Imaging Studies (OASIS) indicated that 3DCNN+EL+GA outperformed other state-of-the-art deep learning algorithms and that the achieved discriminative brain regions (e.g., the rostral hippocampus, caudal hippocampus, and medial amygdala) were linked to emotion, memory, language, and other essential brain functions impaired early in the AD process. Future research is needed to examine the generalizability of the proposed method and ideas to discern discriminative brain regions for other brain disorders, such as severe depression, schizophrenia, autism, and cerebrovascular diseases, using neuroimaging.

3.
Plant Biotechnol J ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189440

RESUMEN

Rice tillering is an important agronomic trait that influences plant architecture and ultimately affects yield. This can be genetically improved by mining favourable variations in genes associated with tillering. Based on a previous study on dynamic tiller number, we cloned the gene Tiller number 1a (Tn1a), which encodes a membrane-localised protein containing the C2 domain that negatively regulates tillering in rice. A 272 bp insertion/deletion at 387 bp upstream of the start codon in the Tn1a promoter confers a differential transcriptional response and results in a change in tiller number. Moreover, the TCP family transcription factors Tb2 and TCP21 repress the Tn1a promoter activity by binding to the TCP recognition site within the 272 bp indel. In addition, we identified that Tn1a may affect the intracellular K+ content by interacting with a cation-chloride cotransporter (OsCCC1), thereby affecting the expression of downstream tillering-related genes. The Tn1a+272 bp allele, associated with high tillering, might have been preferably preserved in rice varieties in potassium-poor regions during domestication. The discovery of Tn1a is of great significance for further elucidating the genetic basis of tillering characteristics in rice and provides a new and favourable allele for promoting the geographic adaptation of rice to soil potassium.

4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 485-493, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38932534

RESUMEN

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder. Due to the subtlety of symptoms in the early stages of AD, rapid and accurate clinical diagnosis is challenging, leading to a high rate of misdiagnosis. Current research on early diagnosis of AD has not sufficiently focused on tracking the progression of the disease over an extended period in subjects. To address this issue, this paper proposes an ensemble model for assisting early diagnosis of AD that combines structural magnetic resonance imaging (sMRI) data from two time points with clinical information. The model employs a three-dimensional convolutional neural network (3DCNN) and twin neural network modules to extract features from the sMRI data of subjects at two time points, while a multi-layer perceptron (MLP) is used to model the clinical information of the subjects. The objective is to extract AD-related features from the multi-modal data of the subjects as much as possible, thereby enhancing the diagnostic performance of the ensemble model. Experimental results show that based on this model, the classification accuracy rate is 89% for differentiating AD patients from normal controls (NC), 88% for differentiating mild cognitive impairment converting to AD (MCIc) from NC, and 69% for distinguishing non-converting mild cognitive impairment (MCInc) from MCIc, confirming the effectiveness and efficiency of the proposed method for early diagnosis of AD, as well as its potential to play a supportive role in the clinical diagnosis of early Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Diagnóstico Precoz , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico , Humanos , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad , Algoritmos
5.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2376-2384, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812138

RESUMEN

The abnormal activation of the mammalian target of rapamycin(mTOR) signaling pathway in non-small cell lung cancer(NSCLC) is closely associated with distant metastasis, drug resistance, tumor immune escape, and low overall survival. The present study reported that betulinic acid(BA), a potent inhibitor of mTOR signaling pathway, exhibited an inhibitory activity against NSCLC in vitro and in vivo. CCK-8 and colony formation results demonstrated that BA significantly inhibited the viability and clonogenic ability of H1299, A549, and LLC cells. Additionally, the treatment with BA induced mitochondrion-mediated apoptosis of H1299 and LLC cells. Furthermore, BA inhibited the mobility and invasion of H1299 and LLC cells by down-regulating the expression level of matrix metalloproteinase 2(MMP2) and impairing epithelial-mesenchymal transition. The results demonstrated that the inhibition of mTOR signaling pathway by BA decreased the proportion of M2 phenotype(CD206 positive) cells in total macrophages. Furthermore, a mouse model of subcutaneous tumor was established with LLC cells to evaluate the anti-tumor efficiency of BA in vivo. The results revealed that the administration of BA dramatically retarded the tumor growth and inhibited the proliferation of tumor cells. More importantly, BA increased the ratio of M1/M2 macrophages in the tumor tissue, which implied the enhancement of anti-tumor immunity. In conclusion, BA demonstrated the inhibitory effect on NSCLC by repolarizing tumor-associated macrophages via the mTOR signaling pathway.


Asunto(s)
Ácido Betulínico , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Triterpenos Pentacíclicos , Transducción de Señal , Serina-Treonina Quinasas TOR , Macrófagos Asociados a Tumores , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Triterpenos Pentacíclicos/farmacología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Línea Celular Tumoral , Triterpenos/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 121(21): e2322462121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38758699

RESUMEN

While scientific researchers often aim for high productivity, prioritizing the quantity of publications may come at the cost of time and effort dedicated to individual research. It is thus important to examine the relationship between productivity and disruption for individual researchers. Here, we show that with the increase in the number of published papers, the average citation per paper will be higher yet the mean disruption of papers will be lower. In addition, we find that the disruption of scientists' papers may decrease when they are highly productive in a given year. The disruption of papers in each year is not determined by the total number of papers published in the author's career, but rather by the productivity of that particular year. Besides, more productive authors also tend to give references to recent and high-impact research. Our findings highlight the potential risks of pursuing productivity and aim to encourage more thoughtful career planning among scientists.


Asunto(s)
Edición , Investigadores , Edición/estadística & datos numéricos , Humanos , Eficiencia , Factor de Impacto de la Revista , Bibliometría
7.
Sci Rep ; 14(1): 8769, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627531

RESUMEN

Multilayer networks composed of intralayer edges and interlayer edges are an important type of complex networks. Considering the heterogeneity of nodes and edges, it is necessary to design more reasonable and diverse community detection methods for multilayer networks. Existing research on community detection in multilayer networks mainly focuses on multiplexing networks (where the nodes are homogeneous and the edges are heterogeneous), but few studies have focused on heterogeneous multilayer networks where both nodes and edges represent different semantics. In this paper, we studied community detection on heterogeneous multilayer networks and proposed a motif-based detection algorithm. First, the communities and motifs of multilayer networks are defined, especially the interlayer motifs. Then, the modularity of multilayer networks based on these motifs is designed, and the community structure of the multilayer network is detected by maximizing the modularity of multilayer networks. Finally, we verify the effectiveness of the detection algorithm on synthetic networks. In the experiments on synthetic networks, comparing with the classical community detection algorithms (without considering interlayer heterogeneity), the motif-based modularity community detection algorithm can obtain better results under different evaluation indexes, and we found that there exists a certain relationship between motifs and communities. In addition, the proposed algorithm is applied in the empirical network, which shows its practicability in the real world. This study provides a solution for the investigation of heterogeneous information in multilayer networks.

8.
Comput Methods Programs Biomed ; 249: 108141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574423

RESUMEN

BACKGROUND AND OBJECTIVE: Lung tumor annotation is a key upstream task for further diagnosis and prognosis. Although deep learning techniques have promoted automation of lung tumor segmentation, there remain challenges impeding its application in clinical practice, such as a lack of prior annotation for model training and data-sharing among centers. METHODS: In this paper, we use data from six centers to design a novel federated semi-supervised learning (FSSL) framework with dynamic model aggregation and improve segmentation performance for lung tumors. To be specific, we propose a dynamically updated algorithm to deal with model parameter aggregation in FSSL, which takes advantage of both the quality and quantity of client data. Moreover, to increase the accessibility of data in the federated learning (FL) network, we explore the FAIR data principle while the previous federated methods never involve. RESULT: The experimental results show that the segmentation performance of our model in six centers is 0.9348, 0.8436, 0.8328, 0.7776, 0.8870 and 0.8460 respectively, which is superior to traditional deep learning methods and recent federated semi-supervised learning methods. CONCLUSION: The experimental results demonstrate that our method is superior to the existing FSSL methods. In addition, our proposed dynamic update strategy effectively utilizes the quality and quantity information of client data and shows efficiency in lung tumor segmentation. The source code is released on (https://github.com/GDPHMediaLab/FedDUS).


Asunto(s)
Algoritmos , Neoplasias Pulmonares , Humanos , Automatización , Neoplasias Pulmonares/diagnóstico por imagen , Programas Informáticos , Aprendizaje Automático Supervisado , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador
9.
IEEE J Biomed Health Inform ; 28(6): 3637-3648, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442047

RESUMEN

The integration of structural magnetic resonance imaging (sMRI) and deep learning techniques is one of the important research directions for the automatic diagnosis of Alzheimer's disease (AD). Despite the satisfactory performance achieved by existing voxel-based models based on convolutional neural networks (CNNs), such models only handle AD-related brain atrophy at a single spatial scale and lack spatial localization of abnormal brain regions based on model interpretability. To address the above limitations, we propose a traceable interpretability model for AD recognition based on multi-patch attention (MAD-Former). MAD-Former consists of two parts: recognition and interpretability. In the recognition part, we design a 3D brain feature extraction network to extract local features, followed by constructing a dual-branch attention structure with different patch sizes to achieve global feature extraction, forming a multi-scale spatial feature extraction framework. Meanwhile, we propose an important attention similarity position loss function to assist in model decision-making. The interpretability part proposes a traceable method that can obtain a 3D ROI space through attention-based selection and receptive field tracing. This space encompasses key brain tissues that influence model decisions. Experimental results reveal the significant role of brain tissues such as the Fusiform Gyrus (FuG) in AD recognition. MAD-Former achieves outstanding performance in different tasks on ADNI and OASIS datasets, demonstrating reliable model interpretability.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Profundo , Algoritmos , Anciano
10.
Artículo en Inglés | MEDLINE | ID: mdl-38145509

RESUMEN

Although federated learning (FL) has achieved outstanding results in privacy-preserved distributed learning, the setting of model homogeneity among clients restricts its wide application in practice. This article investigates a more general case, namely, model-heterogeneous FL (M-hete FL), where client models are independently designed and can be structurally heterogeneous. M-hete FL faces new challenges in collaborative learning because the parameters of heterogeneous models could not be directly aggregated. In this article, we propose a novel allosteric feature collaboration (AlFeCo) method, which interchanges knowledge across clients and collaboratively updates heterogeneous models on the server. Specifically, an allosteric feature generator is developed to reveal task-relevant information from multiple client models. The revealed information is stored in the client-shared and client-specific codes. We exchange client-specific codes across clients to facilitate knowledge interchange and generate allosteric features that are dimensionally variable for model updates. To promote information communication between different clients, a dual-path (model-model and model-prediction) communication mechanism is designed to supervise the collaborative model updates using the allosteric features. Client models are fully communicated through the knowledge interchange between models and between models and predictions. We further provide theoretical evidence and convergence analysis to support the effectiveness of AlFeCo in M-hete FL. The experimental results show that the proposed AlFeCo method not only performs well on classical FL benchmarks but also is effective in model-heterogeneous federated antispoofing. Our codes are publicly available at https://github.com/ybaoyao/AlFeCo.

11.
Sci Adv ; 9(45): eadg5296, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939173

RESUMEN

Owing to the nondeterministic and nonlinear nature of gene expression, the steady-state intracellular protein abundance of a clonal population forms a distribution. The characteristics of this distribution, including expression strength and noise, are closely related to cellular behavior. However, quantitative description of these characteristics has so far relied on arrayed methods, which are time-consuming and labor-intensive. To address this issue, we propose a deep-learning-assisted Sort-Seq approach (dSort-Seq) in this work, enabling high-throughput profiling of expression properties with high precision. We demonstrated the validity of dSort-Seq for large-scale assaying of the dose-response relationships of biosensors. In addition, we comprehensively investigated the contribution of transcription and translation to noise production in Escherichia coli, from which we found that the expression noise is strongly coupled with the mean expression level. We also found that the transcriptional interference caused by overlapping RpoD-binding sites contributes to noise production, which suggested the existence of a simple and feasible noise control strategy in E. coli.


Asunto(s)
Aprendizaje Profundo , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
12.
Curr Mol Med ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38013443

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a malignant tumor. Slug has been found to display a key role in diversified cancers, but its relevant regulatory mechanisms in CRC development are not fully explored. OBJECTIVE: Hence, exploring the function and regulatory mechanisms of Slug is critical for the treatment of CRC. METHODS: Protein expressions of Slug, N-cadherin, E-cadherin, Snail, HIF-1α, SUMO1, Drp1, Opa1, Mfn1/2, PGC-1α, NRF1, and TFAM were measured through western blot. To evaluate the protein expression of Slug and SUMO-1, an immunofluorescence assay was used. Cell migration ability was tested through transwell assay. The SUMOylation of Slug was examined through CO-IP assay. RESULTS: Slug displayed higher expression and facilitated tumor metastasis in CRC. In addition, hypoxia treatment was discovered to upregulate HIF-1α, Slug, and SUMO-1 levels, as well as induce Slug SUMOylation. Slug SUMOylation markedly affected mitochondrial biosynthesis, fusion, and mitogen-related protein expression levels to trigger mitochondrial stress. Additionally, the induced mitochondrial stress by hypoxia could be rescued by Slug inhibition and TAK-981 treatment. CONCLUSION: Our study expounded that hypoxia affects mitochondrial stress and facilitates tumor metastasis of CRC through Slug SUMOylation.

13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 852-858, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37879913

RESUMEN

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Diagnóstico por Computador , Encéfalo
14.
Comput Med Imaging Graph ; 109: 102287, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634975

RESUMEN

Cardiovascular disease (CVD) accounts for about half of non-communicable diseases. Vessel stenosis in the coronary artery is considered to be the major risk of CVD. Computed tomography angiography (CTA) is one of the widely used noninvasive imaging modalities in coronary artery diagnosis due to its superior image resolution. Clinically, segmentation of coronary arteries is essential for the diagnosis and quantification of coronary artery disease. Recently, a variety of works have been proposed to address this problem. However, on one hand, most works rely on in-house datasets, and only a few works published their datasets to the public which only contain tens of images. On the other hand, their source code have not been published, and most follow-up works have not made comparison with existing works, which makes it difficult to judge the effectiveness of the methods and hinders the further exploration of this challenging yet critical problem in the community. In this paper, we propose a large-scale dataset for coronary artery segmentation on CTA images. In addition, we have implemented a benchmark in which we have tried our best to implement several typical existing methods. Furthermore, we propose a strong baseline method which combines multi-scale patch fusion and two-stage processing to extract the details of vessels. Comprehensive experiments show that the proposed method achieves better performance than existing works on the proposed large-scale dataset. The benchmark and the dataset are published at https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.


Asunto(s)
Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria , Humanos , Vasos Coronarios/diagnóstico por imagen , Algoritmos , Benchmarking , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía Coronaria/métodos
15.
Med Image Anal ; 89: 102906, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499333

RESUMEN

Automatic vertebral body contour extraction (AVBCE) from heterogeneous spinal MRI is indispensable for the comprehensive diagnosis and treatment of spinal diseases. However, AVBCE is challenging due to data heterogeneity, image characteristics complexity, and vertebral body morphology variations, which may cause morphology errors in semantic segmentation. Deep active contour-based (deep ACM-based) methods provide a promising complement for tackling morphology errors by directly parameterizing the contour coordinates. Extending the target contours' capture range and providing morphology-aware parameter maps are crucial for deep ACM-based methods. For this purpose, we propose a novel Attractive Deep Morphology-aware actIve contouR nEtwork (ADMIRE) that embeds an elaborated contour attraction term (CAT) and a comprehensive contour quality (CCQ) loss into the deep ACM-based framework. The CAT adaptively extends the target contours' capture range by designing an all-to-all force field to enable the target contours' energy to contribute to farther locations. Furthermore, the CCQ loss is carefully designed to generate morphology-aware active contour parameters by simultaneously supervising the contour shape, tension, and smoothness. These designs, in cooperation with the deep ACM-based framework, enable robustness to data heterogeneity, image characteristics complexity, and target contour morphology variations. Furthermore, the deep ACM-based ADMIRE is able to cooperate well with semi-supervised strategies such as mean teacher, which enables its function in semi-supervised scenarios. ADMIRE is trained and evaluated on four challenging datasets, including three spinal datasets with more than 1000 heterogeneous images and more than 10000 vertebrae bodies, as well as a cardiac dataset with both normal and pathological cases. Results show ADMIRE achieves state-of-the-art performance on all datasets, which proves ADMIRE's accuracy, robustness, and generalization ability.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Cuerpo Vertebral , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética
16.
Front Bioeng Biotechnol ; 11: 1212044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425355

RESUMEN

Syngas fermentation processes with acetogens represent a promising process for the reduction of CO2 emissions alongside bulk chemical production. However, to fully realize this potential the thermodynamic limits of acetogens need to be considered when designing a fermentation process. An adjustable supply of H2 as electron donor plays a key role in autotrophic product formation. In this study an anaerobic laboratory scale continuously stirred tank reactor was equipped with an All-in-One electrode allowing for in-situ H2 generation via electrolysis. Furthermore, this system was coupled to online lactate measurements to control the co-culture of a recombinant lactate-producing Acetobacterium woodii strain and a lactate-consuming Clostridium drakei strain to produce caproate. When C. drakei was grown in batch cultivations with lactate as substrate, 1.6 g·L-1 caproate were produced. Furthermore, lactate production of the A. woodii mutant strain could manually be stopped and reinitiated by controlling the electrolysis. Applying this automated process control, lactate production of the A. woodii mutant strain could be halted to achieve a steady lactate concentration. In a co-culture experiment with the A. woodii mutant strain and the C. drakei strain, the automated process control was able to dynamically react to changing lactate concentrations and adjust H2 formation respectively. This study confirms the potential of C. drakei as medium chain fatty acid producer in a lactate-mediated, autotrophic co-cultivation with an engineered A. woodii strain. Moreover, the monitoring and control strategy presented in this study reinforces the case for autotrophically produced lactate as a transfer metabolite in defined co-cultivations for value-added chemical production.

17.
Comput Biol Med ; 160: 106977, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37163964

RESUMEN

Automatic vertebra recognition from magnetic resonance imaging (MRI) is of significance in disease diagnosis and surgical treatment of spinal patients. Although modern methods have achieved remarkable progress, vertebra recognition still faces two challenges in practice: (1) Vertebral appearance challenge: The vertebral repetitive nature causes similar appearance among different vertebrae, while pathological variation causes different appearance among the same vertebrae; (2) Field of view (FOV) challenge: The FOVs of the input MRI images are unpredictable, which exacerbates the appearance challenge because there may be no specific-appearing vertebrae to assist recognition. In this paper, we propose a Feature-cOrrelation-aware history-pReserving-sparse-Coding framEwork (FORCE) to extract highly discriminative features and alleviate these challenges. FORCE is a recognition framework with two elaborated modules: (1) A feature similarity regularization (FSR) module to constrain the features of the vertebrae with the same label (but potentially with different appearances) to be closer in the latent feature space in an Eigenmap-based regularization manner. (2) A cumulative sparse representation (CSR) module to achieve feed-forward sparse coding while preventing historical features from being erased, which leverages both the intrinsic advantages of sparse codes and the historical features for obtaining more discriminative sparse codes encoding each vertebra. These two modules are embedded into the vertebra recognition framework in a plug-and-play manner to improve feature discrimination. FORCE is trained and evaluated on a challenging dataset containing 600 MRI images. The evaluation results show that FORCE achieves high performance in vertebra recognition and outperforms other state-of-the-art methods.


Asunto(s)
Algoritmos , Columna Vertebral , Humanos , Columna Vertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
18.
Nat Commun ; 14(1): 2772, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188719

RESUMEN

The use of gaseous and air-captured CO2 for technical biosynthesis is highly desired, but elusive so far due to several obstacles including high energy (ATP, NADPH) demand, low thermodynamic driving force and limited biosynthesis rate. Here, we present an ATP and NAD(P)H-free chemoenzymatic system for amino acid and pyruvate biosynthesis by coupling methanol with CO2. It relies on a re-engineered glycine cleavage system with the NAD(P)H-dependent L protein replaced by biocompatible chemical reduction of protein H with dithiothreitol. The latter provides a higher thermodynamic driving force, determines the reaction direction, and avoids protein polymerization of the rate-limiting enzyme carboxylase. Engineering of H protein to effectively release the lipoamide arm from a protected state further enhanced the system performance, achieving the synthesis of glycine, serine and pyruvate at g/L level from methanol and air-captured CO2. This work opens up the door for biosynthesis of amino acids and derived products from air.


Asunto(s)
NAD , Ácido Pirúvico , Ácido Pirúvico/metabolismo , NAD/metabolismo , Aminoácidos , Dióxido de Carbono , Metanol , Adenosina Trifosfato
19.
PLoS Comput Biol ; 19(4): e1011083, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104532

RESUMEN

As infected and vaccinated population increases, some countries decided not to impose non-pharmaceutical intervention measures anymore and to coexist with COVID-19. However, we do not have a comprehensive understanding of its consequence, especially for China where most population has not been infected and most Omicron transmissions are silent. This paper aims to reveal the complete silent transmission dynamics of COVID-19 by agent-based simulations overlaying a big data of more than 0.7 million real individual mobility tracks without any intervention measures throughout a week in a Chinese city, with an extent of completeness and realism not attained in existing studies. Together with the empirically inferred transmission rate of COVID-19, we find surprisingly that with only 70 citizens to be infected initially, 0.33 million becomes infected silently at last. We also reveal a characteristic daily periodic pattern of the transmission dynamics, with peaks in mornings and afternoons. In addition, by inferring individual professions, visited locations and age group, we found that retailing, catering and hotel staff are more likely to get infected than other professions, and elderly and retirees are more likely to get infected at home than outside home.


Asunto(s)
COVID-19 , Humanos , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Macrodatos , Ocupaciones , China/epidemiología
20.
Cell Prolif ; 56(5): e13481, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37084418

RESUMEN

Regeneration is the regrowth of damaged tissues or organs, a vital process in response to damages from primitive organisms to higher mammals. Planarian possesses active whole-body regenerative capability owing to its vast reservoir of adult stem cells, neoblasts, providing an ideal model to delineate the underlying mechanisms for regeneration. RNA N6 -methyladenosine (m6 A) modification participates in many biological processes, including stem cell self-renewal and differentiation, in particular the regeneration of haematopoietic stem cells and axons. However, how m6 A controls regeneration at the whole-organism level remains largely unknown. Here, we demonstrate that the depletion of m6 A methyltransferase regulatory subunit wtap abolishes planarian regeneration, potentially through regulating genes related to cell-cell communication and cell cycle. Single-cell RNA-seq (scRNA-seq) analysis unveils that the wtap knockdown induces a unique type of neural progenitor-like cells (NP-like cells), characterized by specific expression of the cell-cell communication ligand grn. Intriguingly, the depletion of m6 A-modified transcripts grn, cdk9 or cdk7 partially rescues the defective regeneration of planarian caused by wtap knockdown. Overall, our study reveals an indispensable role of m6 A modification in regulating whole-organism regeneration.


Asunto(s)
Células Madre Adultas , Planarias , Animales , Planarias/genética , Planarias/metabolismo , Interferencia de ARN , Diferenciación Celular/genética , División Celular , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA