Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 35(14): 1273-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24798978

RESUMEN

Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers.


Asunto(s)
Elastina/química , Nanofibras/química , Polímeros/química , Seda/química , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Péptidos/química , Temperatura , Agua/química
2.
Appl Phys Lett ; 104(3): 033702, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24753621

RESUMEN

Self-assembled peptide/polypeptide nanofibers are appealing building blocks for creating complex three-dimensional structures. However, ordering assembled peptide/polypeptide nanofibers into three-dimensional structures on the microscale remains challenging and often requires the employment of top-down approaches. We report that silk-elastin-like protein polymers self-assemble into nanofibers in physiologically relevant conditions, the assembled nanofibers further form fiber clusters on the microscale, and the nanofiber clusters eventually coalesce into three-dimensional structures with distinct nanoscale and microscale features. It is believed that the interplay between fiber growth and molecular diffusion leads to the ordering of the assembled silk-elastin-like nanofibers at the microscale.

3.
Biopolymers ; 101(4): 336-46, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23913748

RESUMEN

Coaxial electrospinning is used to fabricate nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core in order to derive mechanical strength from PVA and bioactivity from gelatin. At a 1:1 PVA/gelatin mass ratio, the core-shell nanofiber scaffolds display a Young's modulus of 168.6 ± 36.5 MPa and a tensile strength of 5.42 ± 1.95 MPa, which are significantly higher than those of the scaffolds composed solely of gelatin or PVA. The Young's modulus and tensile strength of the core-shell nanofibers are further improved by reducing the PVA/gelatin mass ratio from 1:1 to 1:3. The mechanical analysis of the core-shell nanofibers suggests that the presence of the gelatin shell may improve the molecular alignment of the PVA core, transforming the semi-crystalline, plastic PVA into a more crystallized, elastic PVA, and enhancing the mechanical properties of the core. Lastly, the PVA/gelatin core-shell nanofibers possess cellular viability, proliferation, and adhesion similar to these of the gelatin nanofibers, and show significantly higher proliferation and adhesion than the PVA nanofibers. Taken together, the coaxial electrospinning of nanofibers with a core-shell structure permits integration of the bioactivity of gelatin and the mechanical strength of PVA in single fibers.


Asunto(s)
Gelatina/farmacología , Fenómenos Mecánicos , Nanofibras/química , Alcohol Polivinílico/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones , Células 3T3 NIH , Nanofibras/ultraestructura , Tamaño de la Partícula , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Andamios del Tejido/química
4.
J Nanosci Nanotechnol ; 12(1): 245-51, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22523972

RESUMEN

Vesicles comprised of 10,12-pentacosadiynoic acid (PCDA) were modified, using polyethylene glycol 40 stearate (PEG40S), and crosslinked by ultraviolet (UV) irradiation to create polymerized nanovesicles for sustained drug release. Paclitaxel, a water-insoluble compound widely used in cancer chemotherapy, was used as a model drug to examine the physicochemical stability and release profiles of PCDA/PEG40S nanovesicles. TEM analysis revealed the formation of paclitaxel-encapsulated PCDA/PEG40S nanovesicles of 40 to 200 nm in size. Upon the addition of ethanol, instantaneous releases of paclitaxel in the amount of 28 microg/mL from polymerized PCDA/PEG40S nanovesicles and 108 microg/ml from unpolymerized ones were observed. This suggested the non-complete drug release from polymerized PCDA/PEG40S nanovesicles due to their enhanced physicochemical stability by ultraviolet irradiation-induced polymerization, if compared to unpolymerized ones. An in vitro study demonstrated that an accumulative release of 24.1 +/- 3.1% and 8.1 +/- 1.7% of paclitaxel was obtained within 24 hrs from nanovesicles comprised of PCDA/PEG40S at a 9:1 and 7:3 molar ratio, respectively. A finite element model that considered the diffusion-driven releases and the reversible drug-vesicle interaction captured the sustained release of paclitaxel from polymerized PCDA/PEG40S nanovesicles. PCDA/PEG40S nanovesicles capable of sustained release and with enhanced physicochemical stability thus possess great potential for applications in drug release.


Asunto(s)
Ácidos Grasos Insaturados/química , Modelos Químicos , Nanocápsulas/química , Nanocápsulas/ultraestructura , Paclitaxel/administración & dosificación , Paclitaxel/química , Polietilenglicoles/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Simulación por Computador , Difusión , Análisis de Elementos Finitos , Tamaño de la Partícula
5.
J Drug Deliv ; 2011: 370308, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21845225

RESUMEN

Numerous nanocarriers of various compositions and geometries have been developed for the delivery and release of therapeutic and imaging agents. Due to the high specific surface areas of nanocarriers, different mechanisms such as ion pairing and hydrophobic interaction need to be explored for achieving sustained release. Recently, we developed a three-parameter model that considers reversible drug-carrier interaction and first-order drug release from liposomes. A closed-form analytical solution was obtained. Here, we further explore the ability of the model to capture the release of bioactive molecules such as drugs and growth factors from various nanocarriers. A parameter study demonstrates that the model is capable of resembling major categories of drug release kinetics. We further fit the model to 60 sets of experimental data from various drug release systems, including nanoparticles, hollow particles, fibers, and hollow fibers. Additionally, bootstrapping is used to evaluate the accuracy of parameter determination and validate the model in selected cases. The simplicity and universality of the model and the clear physical meanings of each model parameter render the model useful for the design and development of new drug delivery systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA