Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732182

RESUMEN

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Antocianinas/biosíntesis , Antocianinas/metabolismo , Frutas/metabolismo , Frutas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/genética , Interferencia de ARN
2.
Nat Commun ; 15(1): 3623, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684703

RESUMEN

Solanaceous plants produce tropane alkaloids (TAs) via esterification of 3α- and 3ß-tropanol. Although littorine synthase is revealed to be responsible for 3α-tropanol esterification that leads to hyoscyamine biosynthesis, the genes associated with 3ß-tropanol esterification are unknown. Here, we report that a BAHD acyltransferase from Atropa belladonna, 3ß-tigloyloxytropane synthase (TS), catalyzes 3ß-tropanol and tigloyl-CoA to form 3ß-tigloyloxytropane, the key intermediate in calystegine biosynthesis and a potential drug for treating neurodegenerative disease. Unlike other cytosolic-localized BAHD acyltransferases, TS is localized to mitochondria. The catalytic mechanism of TS is revealed through molecular docking and site-directed mutagenesis. Subsequently, 3ß-tigloyloxytropane is synthesized in tobacco. A bacterial CoA ligase (PcICS) is found to synthesize tigloyl-CoA, an acyl donor for 3ß-tigloyloxytropane biosynthesis. By expressing TS mutant and PcICS, engineered Escherichia coli synthesizes 3ß-tigloyloxytropane from tiglic acid and 3ß-tropanol. This study helps to characterize the enzymology and chemodiversity of TAs and provides an approach for producing 3ß-tigloyloxytropane.


Asunto(s)
Aciltransferasas , Mitocondrias , Tropanos , Aciltransferasas/metabolismo , Aciltransferasas/genética , Mitocondrias/metabolismo , Mitocondrias/enzimología , Tropanos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutagénesis Sitio-Dirigida
3.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522709

RESUMEN

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Asunto(s)
Atropa belladonna , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta , Nitrógeno , Tropanos , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Atropa belladonna/metabolismo , Atropa belladonna/genética , Tropanos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Hiosciamina/metabolismo , Hiosciamina/genética , Escopolamina/metabolismo , Regiones Promotoras Genéticas
4.
Plant Physiol Biochem ; 208: 108439, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38408396

RESUMEN

Putrescine, produced via the arginine decarboxylase (ADC)/ornithine decarboxylase (ODC)-mediated pathway, is an initial precursor for polyamines metabolism and the root-specific biosynthesis of medicinal tropane alkaloids (TAs). These alkaloids are widely used as muscarinic acetylcholine antagonists in clinics. Although the functions of ODC in biosynthesis of polyamines and TAs have been well investigated, the role of ADC is still poorly understood. In this study, enzyme inhibitor treatment showed that ADC was involved in the biosynthesis of putrescine-derived metabolites and root growth in Atropa belladonna. Further analysis found that there were six ADC unigenes in the A. belladonna transcriptome, with two of them, AbADC1 and AbADC2, exhibiting high expression in the roots. To investigate their roles in TAs/polyamines metabolism and root growth, RNA interference (RNAi) was used to suppress either AbADC1 or AbADC2 expression in A. belladonna hairy roots. Suppression of the AbADC1 expression resulted in a significant reduction in the putrescine content and hairy root biomass. However, it had no noticeable effect on the levels of N-methylputrescine and the TAs hyoscyamine, anisodamine, and scopolamine. On the other hand, suppression of AbADC2 expression markedly reduced the levels of putrescine, N-methylputrescine, and TAs, but had no significant effect on hairy root biomass. According to ß-glucuronidase (GUS) staining assays, AbADC1 was mainly expressed in the root elongation and division region while AbADC2 was mainly expressed in the cylinder of the root maturation region. These differences in expression led to functional divergence, with AbADC1 primarily regulating root growth and AbADC2 contributing to TA biosynthesis.


Asunto(s)
Alcaloides , Atropa belladonna , Carboxiliasas , Atropa belladonna/genética , Atropa belladonna/metabolismo , Putrescina/metabolismo , Tropanos/metabolismo
5.
Nat Commun ; 14(1): 1446, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922496

RESUMEN

Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.


Asunto(s)
Alcaloides , Atropa belladonna , Hiosciamina , Solanaceae , Solanaceae/genética , Solanaceae/metabolismo , Hiosciamina/genética , Hiosciamina/metabolismo , Tropanos/metabolismo , Escopolamina/metabolismo , Atropa belladonna/genética , Atropa belladonna/metabolismo
6.
Plant Physiol Biochem ; 192: 110-119, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219994

RESUMEN

Polyamines, including putrescine, spermidine, and spermine, play critical roles in cell physiology by different forms. As a rate-limiting enzyme that converts ornithine to putrescine, ornithine decarboxylase (ODC, EC 1.1.1.37) has been studied in detail in animals and microorganisms, but its specific functions are poorly understood in plants. In this study, the metabolic and developmental roles of the ODC gene were studied through RNAi-mediated suppression of the ODC gene (AbODC) in A. belladonna. Suppression of AbODC reduced the production of precursors of medicinal tropane alkaloids, including putrescine and N-methylputrescine, as well as hyoscyamine and scopolamine. In AbODC-RNAi roots, the production of putrescine and spermidine in free form was reduced, but in the AbODC-RNAi leaves, the content of free polyamines was not altered. In the roots/leaves of AbODC-RNAi plants, the production of conjugated and bound polyamines was reduced. In addition, suppression of the ODC gene resulted in reduction of polyamines and pollen sterility in AbODC-RNAi flowers. In floral organs, GUS-staining results indicated that AbODC was domainantly expressed in pollen. In summary, ornithine decarboxylase not only plays a key role in regulating the biosynthesis of diverse forms of polyamines and medicinal tropane alkaloids, but also participates in pollen development.

7.
Front Plant Sci ; 13: 924413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720595

RESUMEN

Hyoscyamine and scopolamine, belonging to medicinal tropane alkaloids (MTAs), are potent anticholinergic drugs. Their industrial production relies on medicinal plants, but the levels of the two alkaloids are very low in planta. Engineering the MTA's production is an everlasting hot topic for pharmaceutical industry. With understanding the MTA's biosynthesis, biotechnological approaches are established to produce hyoscyamine and scopolamine in an efficient manner. Great advances have been obtained in engineering MTA's production in planta. In this review, we summarize the advances on the biosynthesis of MTAs and engineering the MTA's production in hairy root cultures, as well in plants. The problems and perspectives on engineering the MTA's production are also discussed.

8.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572199

RESUMEN

Atropa belladonna L. is one of the most important herbal plants that produces hyoscyamine or atropine, and it also produces anisodamine and scopolamine. However, the in planta hyoscyamine content is very low, and it is difficult and expensive to independently separate hyoscyamine from the tropane alkaloids in A. belladonna. Therefore, it is vital to develop A. belladonna plants with high yields of hyoscyamine, and without anisodamine and scopolamine. In this study, we generated A. belladonna plants without anisodamine and scopolamine, via the CRISPR/Cas9-based disruption of hyoscyamine 6ß-hydroxylase (AbH6H), for the first time. Hyoscyamine production was significantly elevated, while neither anisodamine nor scopolamine were produced, in the A. belladonna plants with homozygous mutations in AbH6H. In summary, new varieties of A. belladonna with high yields of hyoscyamine and without anisodamine and scopolamine have great potential applicability in producing hyoscyamine at a low cost.


Asunto(s)
Atropa belladonna/metabolismo , Hiosciamina/biosíntesis , Ingeniería Metabólica/métodos , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/metabolismo , Atropa belladonna/genética , Atropina/biosíntesis , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Hiosciamina/aislamiento & purificación , Oxigenasas de Función Mixta/metabolismo , Mutagénesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Escopolamina/metabolismo , Semillas/genética , Alcaloides Solanáceos/biosíntesis
9.
Front Plant Sci ; 8: 1745, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085381

RESUMEN

Scopolia lurida, a native herbal plant species in Tibet, is one of the most effective producers of tropane alkaloids. However, the tropane alkaloid biosynthesis in this plant species of interest has yet to be studied at the molecular, biochemical, and biotechnological level. Here, we report on the isolation and characterization of a putative short chain dehydrogenase (SDR) gene. Sequence analysis showed that SlTRI belonged to the SDR family. Phylogenetic analysis revealed that SlTRI was clustered with the tropine-forming reductases. SlTRI and the other TA-biosynthesis genes, including putrescine N-methyltransferase (SlPMT) and hyoscyamine 6ß-hydroxylase (SlH6H), were preferably or exclusively expressed in the S. lurida roots. The tissue profile of SlTRI suggested that this gene might be involved in tropane alkaloid biosynthesis. By using GC-MS, SlTRI was shown to catalyze the tropinone reduction to yield tropine, the key intermediate of tropane alkaloids. With the purified recombinant SlTRI from Escherichiacoli, an enzymatic assay was carried out; its result indicated that SlTRI was a tropine-forming reductase. Finally, the role of SlTRI in promoting the tropane alkaloid biosynthesis was confirmed through metabolic engineering in S. lurida. Specifically, hairy root cultures of S. lurida were established to investigate the effects of SlTRI overexpression on tropane alkaloid accumulation. In the SlTRI-overexpressing root cultures, the hyoscyamine contents were 1.7- to 2.9-fold higher than those in control while their corresponding scopolamine contents were likewise elevated. In summary, this functional identification of SlTRI has provided for a better understanding of tropane alkaloid biosynthesis. It also provides a candidate gene for enhancing tropane alkaloid biosynthesis in S. lurida via metabolic engineering.

10.
Front Plant Sci ; 8: 279, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293252

RESUMEN

Purple-fleshed sweet potato is good for health due to rich anthocyanins in tubers. Although the anthocyanin biosynthetic pathway is well understood in up-ground organs of plants, the knowledge on anthocyanin biosynthesis in underground tubers is limited. In the present study, we isolated and functionally characterized a root-preferential gene encoding dihydrokaempferol reductase (IbDHKR) from purple-fleshed sweet potato. IbDHKR showed highly similarity with the reported dihydroflavonol reductases in other plant species at the sequence levels and the NADPH-binding motif and the substrate-binding domain were also found in IbDHKR. The tissue profile showed that IbDHKR was expressed in all the tested organs, but with much higher level in tuber roots. The expression level of IbDHKR was consistent with the anthocyanin content in sweet potato organs, suggesting that tuber roots were the main organs to synthesize anthocyanins. The recombinant 44 kD IbDHKR was purified and fed by three different dihydroflavonol substrates including dihydrokaempferol (DHK), dihydroquerctin, and dihydromyrecetin. The substrate feeding assay indicated that only DHK could be accepted as substrate by IbDHKR, which was reduced to leucopelargonidin confirmed by LC-MS. Finally, IbDHKR was overexpressed in transgenic tobacco. The IbDHKR-overexpression tobacco corolla was more highly pigmented and contained higher level of anthocyanins than the wild-type tobacco corolla. In summary, IbDHKR was a root-preferential gene involved in anthocyanin biosynthesis and its encoding protein, specifically catalyzing DHK reduction to yield leucopelargonidin, was a candidate gene for engineering anthocyanin biosynthetic pathway.

11.
Biotechnol Appl Biochem ; 61(3): 249-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24237015

RESUMEN

The 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway genes encoding DXR and MECS from Taxus species and STR from Catharanthus roseus were used to genetically modify the ajmalicine biosynthetic pathway in hairy root cultures of C. roseus. As expected, the STR-overexpressed root cultures showed twofold higher accumulation of ajmalicine than the control. It was important to discover that overexpression of the single DXR or MECS gene from the MEP pathway also remarkably enhanced ajmalicine biosynthesis in transgenic hairy root cultures, and this suggested that engineering the MEP pathway by overexpression of DXR or MECS promoted the metabolic flux into ajmalicine biosynthesis. The transgenic hairy root cultures with co-overexpression of DXR and STR or MECS and STR had higher levels of ajmalicine than those with overexpression of a single gene alone such as DXR, MECS, and STR. It could be concluded that transgenic hairy root cultures harboring both DXR/MECS and STR possessed an increased flux in the terpenoid indole alkaloid biosynthetic pathway that enhanced ajmalicine yield, which was more efficient than cultures harboring only one of the three genes.


Asunto(s)
Eritritol/análogos & derivados , Ingeniería de Proteínas , Alcaloides de Triptamina Secologanina/metabolismo , Fosfatos de Azúcar/metabolismo , Liasas de Carbono-Nitrógeno/genética , Liasas de Carbono-Nitrógeno/metabolismo , Catharanthus/enzimología , Eritritol/química , Eritritol/metabolismo , Estructura Molecular , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Alcaloides de Triptamina Secologanina/química , Fosfatos de Azúcar/química , Taxus/enzimología , Transferasas/genética , Transferasas/metabolismo
12.
PLoS One ; 8(10): e75459, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124492

RESUMEN

Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21-6.84, 1.50-2.19 and 1.27-3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside.


Asunto(s)
Glucósidos/metabolismo , Fenoles/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Rhodiola/metabolismo , Tirosina Descarboxilasa/metabolismo , Flores/genética , Flores/metabolismo , Plantas Modificadas Genéticamente , Rhodiola/genética , Tirosina Descarboxilasa/genética
13.
Zhongguo Zhong Yao Za Zhi ; 35(9): 1104-7, 2010 May.
Artículo en Chino | MEDLINE | ID: mdl-20707060

RESUMEN

OBJECTIVE: To study the variations of flavonoids contents in vine tips of sweetpotato (Ipomoea batatas) among different varieties, parts and the time of topping. METHOD: The flavonoid contents in leaf, petiole and stem of vine tips at 6 different topping time of 3 varieties for vegetable-use Pushu 53, Guangcaishu No. 2 and Fushu 7-6, which were collected from Chongqing were determined by UV spectrophotometry with rutin as a standard substance. RESULT: The results showed that the flavonoid content of Guangcaishu No. 2 was higher than that of Pusu 53, so was that of Pusu 53 than that of Fushu 7-6. The average flavonoid contents in leaf of 3 varieties were between 3.66 mg x L(-1) and 11.09 mg x L(-1) during 6 topping time, and those in petiole, stem were between 2.20-5.26 mg x L(-1) and 4.03-7.79 mg x L(-1), respectively. The rations of average flavonoid contents in leaf, petiole and stem to the total contents of vine tips among 3 varieties during their whole topping periods were 46.71%, 20.65% and 32.63%, respectively. The contents during earlier topping time were higher than those of later periods. The variance analysis of flavonoid contents revealed that there was significant difference between different varieties, parts and time of topping and significant interactions among varieties, parts and time of topping. CONCLUSION: The results of the study indicate that the contents of flavonoid should be considered for the breeding, cultivation and industrialization of sweetpotato for vegetable-use.


Asunto(s)
Flavonoides/análisis , Ipomoea batatas/química , Extractos Vegetales/análisis , Verduras/química , China , Estructuras de las Plantas/química , Factores de Tiempo
14.
DNA Seq ; 19(2): 98-105, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18297601

RESUMEN

Isopentenyl diphosphate isomerase (EC 5.3.3.2, IPI) catalyzes the revisable conversion of 5-carbon isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which are the essential precursors for isoprenoids, including anti-tumor camptothecin. Here we report cloning, characterization and functional expression of a new cDNA encoding IPI from Camptotheca acuminata. The full-length cDNA was 1143 bp long designated as CaIPI (GenBank Accession Number: DQ839416), containing an open reading frame (ORF) of 930bp which encodes a polypeptide of 309 amino acids. Bioinformatic analysis showed the cDNA sequence of CaIPI was highly homologous with other IPI gene and the deduced amino acid sequence of CaIPI was similar to known plant IPIs and contained Cys-149 and Glu-212 active sites. Phylogenic analysis indicated that all IPIs could be divided into five groups and CaIPI belonged to plant IPIs' family. The tissue expression profile analysis was carried out to investigate the transcriptional level of CaIPI in different tissues. The result showed that CaIPI expression could be detected in roots, stems and tender leaves but could not in mature leaves and fruits, and the expression levels was much higher in stems than in roots and tender leaves. Finally, CaIPI was functionally expressed in engineered Escherichia coli in which the carotenoid pathway was reconstructed. In engineered E. coli, CaIPI could facilitate the metabolic flux to the carotenoids biosynthesis and made the bacteria produce the orange beta-carotene. These confirmed that CaIPI had the typically function of IPI gene. In summary, cloning, characterization and functional expression of CaIPI will facilitate to understand the function of CaIPI at the level of molecular genetics and unveil the biosynthetic mechanism of camptothecin precursors.


Asunto(s)
Camptotheca/enzimología , Camptotheca/genética , Camptotecina/biosíntesis , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Camptotecina/química , Isomerasas de Doble Vínculo Carbono-Carbono/biosíntesis , Isomerasas de Doble Vínculo Carbono-Carbono/química , Escherichia coli/fisiología , Prueba de Complementación Genética , Hemiterpenos , Isoenzimas/biosíntesis , Isoenzimas/química , Isoenzimas/genética , Datos de Secuencia Molecular , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA