Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Dalton Trans ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973455

RESUMEN

In this paper, a broadband solar absorber is constructed and simulated based on the finite difference time domain method (FDTD). The modeled structure of the absorber consists of cyclic stacking of five absorber cells with different periods on refractory metal W, where a single absorber cell is composed of a three-layer SiO2-InAs-TiN square film. Due to the Fabry-Perot resonance and the surface plasmon resonance (SPR), an absorptivity greater than 90% within a bandwidth of 2599.5 nm was achieved for the absorber. Notably, one of these bands, 2001 nm, is a high-efficiency absorption with an absorption rate greater than 99%. The average absorption efficiency reaches 99.31% at an air mass of 1.5 (AM 1.5), and the thermal radiation efficiencies are 97.35% and 97.83% at 1000 K and 1200 K, respectively. At the same time, the structure of the absorber is also polarization-independent, and when the solar incidence angle is increased to 60°, it still achieves an average absorption of 90.83% over the entire wavelength band (280 nm to 3000 nm). The novelty of our work is to provide a design idea based on a unit structure with multiple cycles, which can effectively expand the absorption bandwidth of the absorber in the visible-near-infrared wavelengths. The excellent performances make the structure widely used in the field of solar energy absorption.

2.
Biomaterials ; 311: 122665, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38875882

RESUMEN

Deafness mainly results from irreversible impairment of hair cells (HCs), which may relate to oxidative stress, yet therapeutical solutions is lacked due to limited understanding on the exact molecular mechanism. Herein, mimicking the molecular structure of natural enzymes, a palladium (Pd) single-atom nanozyme (SAN) was fabricated, exhibiting superoxide dismutase and catalase activity, transforming reactive oxygen species (ROS) into O2 and H2O. We examined the involvement of Pd in neomycin-induced HCs loss in vitro and in vivo over zebrafish. Our results revealed that neomycin treatment induced apoptosis in HCs, resulting in substantial of ROS elevation in HEI-OC1 cells, decrease in mitochondrial membrane potential, and increase in lipid peroxidation and iron accumulation, ultimately leading to iron-mediated cell death. Noteworthy, Pd SAN treatment exhibited significant protective effects against HCs damage and impaired HCs function in zebrafish by inhibiting ferroptosis. Furthermore, the application of iron death inducer RSL3 resulted in notable exacerbation of neomycin-induced harm, which was mitigated by Pd administration. Our investigation demonstrates that antioxidants is promising for inhibiting ferroptosis and repairing of mitochondrial function in HCs and the enzyme-mimic SAN provides a good strategy for designing drugs alleviating neomycin-induced ototoxicity.

3.
Dalton Trans ; 53(25): 10618-10625, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857028

RESUMEN

Utilizing the phase transition principle of VO2, this paper presents a tunable ultra-wideband terahertz perfect absorption device with simple structure and tunability. The proposed broadband terahertz perfect absorption device is a three-layer structure with a metal reflective layer, a silicon dioxide dielectric layer and a VO2 layer from bottom to top. It was found that the terahertz perfect absorption device's absorption could be dynamically adjusted from 1.2% to 99.9% when changing from an insulated to a metallic state. With the VO2 in the metallic state, the terahertz perfect absorption device has an absorption efficiency of more than 90% in 4.00 to 10.08 THz's ultra-broadband range and near-perfect absorption is achieved in the ranges of 4.71 THz to 5.16 THz and 7.74 THz to 8.06 THz. To explain the working principle of this terahertz perfect absorption device, this paper utilizes wave interference's principle, theory of impedance matching and electric field analysis. Compared to previously reported terahertz metamaterial devices, the vanadium dioxide device proposed in this paper is significantly optimized in terms of tunable range and absorption bandwidth. In addition, the terahertz perfect absorption device is polarization insensitive and maintains good absorptivity over a wide-angle incidence range. This tunable ultra-wideband terahertz perfect absorption device could have applications in the fields of modulation, stealth devices, and thermal emission devices.

4.
Theor Appl Genet ; 137(7): 152, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850423

RESUMEN

KEY MESSAGE: The durable stripe rust resistance gene Yr30 was fine-mapped to a 610-kb region in which five candidate genes were identified by expression analysis and sequence polymorphisms. The emergence of genetically diverse and more aggressive races of Puccinia striiformis f. sp. tritici (Pst) in the past twenty years has resulted in global stripe rust outbreaks and the rapid breakdown of resistance genes. Yr30 is an adult plant resistance (APR) gene with broad-spectrum effectiveness and its durability. Here, we fine-mapped the YR30 locus to a 0.52-cM interval using 1629 individuals derived from residual heterozygous F5:6 plants in a Yaco"S"/Mingxian169 recombinant inbred line population. This interval corresponded to a 610-kb region in the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 2.1 on chromosome arm 3BS harboring 30 high-confidence genes. Five genes were identified as candidate genes based on functional annotation, expression analysis by RNA-seq and sequence polymorphisms between cultivars with and without Yr30 based on resequencing. Haplotype analysis of the target region identified six haplotypes (YR30_h1-YR30_h6) in a panel of 1215 wheat accessions based on the 660K feature genotyping array. Lines with YR30_h6 displayed more resistance to stripe rust than the other five haplotypes. Near-isogenic lines (NILs) with Yr30 showed a 32.94% higher grain yield than susceptible counterparts when grown in a stripe rust nursery, whereas there was no difference in grain yield under rust-free conditions. These results lay a foundation for map-based cloning Yr30.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Genes de Plantas , Haplotipos , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Mapeo Cromosómico/métodos , Puccinia/patogenicidad , Basidiomycota/patogenicidad , Polimorfismo de Nucleótido Simple , Cromosomas de las Plantas/genética
5.
Plant Dis ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937931

RESUMEN

Wheat stripe rust is a destructive disease worldwide, caused by Puccinia striiformis f. sp. tritici (Pst). Resistance breeding is the most effective method of controlling stripe rust. Xinjiang is a relatively independent epidemic region of wheat stripe rust in China. In recent years, wheat stripe rust in this area has shown an upward trend. Therefore, the purpose of this study was to evaluate the resistance level of wheat cultivars (lines) to the prevalent Pst races and determine the genetic background of stripe rust resistance genes in Xinjiang. Six predominant Pst races in China were used to study resistance of 286 wheat cultivars (lines) at both seedling under controlled conditions and adult-plant stages under field conditions. In the seedling tests, 175 (61.19%) entries were resistant to races CYR23, 125 (43.71%) to CYR29, 153 (53.50%) to CYR31, 88 (30.77%) to CYR32, 174 (60.84%) to CYR33, and 98 (34.27%) to CYR34. Among the resistant entries, 23 (8.04%) were resistant to all six races. In the field test, 135 (47.20%) entries were resistant to the tested mixed races. Through comparing the responses in the seedling and adult-plant stages, 109 (38.11%) entries were found to have adult-plant resistance (APR), and 14 (4.90%) entries have all-stage resistance (ASR). The 286 wheat entries were also tested using a wheat breeder chip containing 12 Yr resistance loci. Among these entries, 44 (15.38%) were found to have single gene, 221 (77.27%) have two or more genes, and 21 (7.34%) have none of the 12 genes, including 144 (50.35%) with Yr30 and 5 (1.75%) with YrSP. Entries with two or more genes have stronger resistance to Pst. Overall, the majority of entries have all-stage and/or adult-plant resistance, but their genes for resistance in addition to the 12 tested Yr genes need to be determined. It is also necessary to introduce more effective resistance genes in the breeding programs to improve stripe rust resistance in wheat cultivars in Xinjiang.

6.
Plant Phenomics ; 6: 0171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694449

RESUMEN

Stay-green (SG) in wheat is a beneficial trait that increases yield and stress tolerance. However, conventional phenotyping techniques limited the understanding of its genetic basis. Spectral indices (SIs) as non-destructive tools to evaluate crop temporal senescence provide an alternative strategy. Here, we applied SIs to monitor the senescence dynamics of 565 diverse wheat accessions from anthesis to maturation stages over 2 field seasons. Four SIs (normalized difference vegetation index, green normalized difference vegetation index, normalized difference red edge index, and optimized soil-adjusted vegetation index) were normalized to develop relative stay-green scores (RSGS) as the SG indicators. An RSGS-based genome-wide association study identified 47 high-confidence quantitative trait loci (QTL) harboring 3,079 single-nucleotide polymorphisms associated with SG and 1,085 corresponding candidate genes. Among them, 15 QTL overlapped or were adjacent to known SG-related QTL/genes, while the remaining QTL were novel. Notably, a set of favorable haplotypes of SG-related candidate genes such as TraesCS2A03G1081100, TracesCS6B03G0356400, and TracesCS2B03G1299500 are increasing following the Green Revolution, further validating the feasibility of the pipeline. This study provided a valuable reference for further quantitative SG and genetic research in diverse wheat panels.

7.
Plant Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537145

RESUMEN

Fusarium head blight (FHB) is a devastating disease that occurs in warm and humid environments. The German wheat Centrum has displayed moderate to high levels of FHB resistance in the field for many years. In this study, an F6:8 recombinant inbred line (RIL) population derived from cross Centrum × Xinong 979 was evaluated for FHB response following point inoculation in five environments. The population and parents were genotyped using the GenoBaits Wheat 16 K Panel. Stable quantitative trait loci (QTL) associated with FHB resistance in Centrum were mapped on chromosome arms 2DS and 5BS. The most effective QTL, located in 2DS, was identified as a new chromosome region represented by a 1.4 Mb interval containing 17 candidate genes. Another novel QTL was mapped in chromosome arm 5BS of a 5BS-7BS translocation chromosome. In addition, two environmentally-sensitive QTL were mapped on chromosome arms 2BL from Centrum and 5AS from Xinong 979. Polymorphisms of flanking allele-specifc quantitative PCR (AQP) markers AQP-6 for QFhb.nwafu-2DS and 16K-13073 for QFhb.nwafu-5BS were validated in a panel of 217 cultivars and breeding lines. These markers could be useful for marker-assisted selection of FHB resistance and also provide a starting point for fine mapping and marker-based cloning of the resistance genes.

8.
Endocr Connect ; 13(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991208

RESUMEN

Objective: Serum 25-hydroxyvitamin D (25(OH)D) deficiency has been known to be associated with the risk and mortality of several cancers. However, the role of 25(OH)D in papillary thyroid cancer (PTC) remains controversial. This study aimed to investigate the association between 25(OH)D and clinicopathologic features of PTC. Methods: Patients who underwent thyroidectomy were retrospectively reviewed. Serum 25(OH)D levels were measured within a week prior to surgery. The patients were categorized into four quartiles according to season-specific 25(OH)D levels. The association between 25(OH)D levels and clinicopathologic features of PTC was analyzed. Results: A total of 2932 patients were enrolled in the study. The 25(OH)D levels were significantly higher in patients with lymph node metastasis (LNM; P < 0.001), lateral LNM (P < 0.001), and multifocal tumors (P < 0.001). Compared to the first quartile (Q1) of 25(OH)D level, the third quartile (Q3) and the fourth quartile (Q4) showed an unadjusted OR of 1.36 (95% CI: 1.09-1.69; P = 0.006) and 1.76 (95% CI: 1.42-2.19; P < 0.001) for LNM (P for trend < 0.001), respectively. An increased risk of multifocal tumors was strongly associated with high 25(OH)D concentration (P for trend <0.001). Similar results were obtained after adjusting for confounding factors. Conclusion: High 25(OH)D levels are associated with aggressive features of PTC, such as lymph node metastasis and multifocality.

9.
Opt Lett ; 48(23): 6296-6299, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039251

RESUMEN

To avoid metal layer oxidation during the deposition of transparent conductive oxide (TCO)/metal/TCO multilayer films in an oxygen-containing atmosphere, the ultra-thin (<10 nm) titanium nitride (TiN) layer has been proposed to replace metal embedding in gallium-doped zinc oxide (GZO) film for the development of indium-free transparent electrodes. The effects of TiN thickness on the structure, morphology, electrical, and optical properties of GZO/TiN/GZO multilayer thin films deposited in argon-oxygen mixtures on glass substrates by magnetron sputtering are investigated. The experimental results reveal that multilayers with the 8 nm-thick TiN layer have the optimal performance (figure of merit of 2.75 × 10-1 Ω-1): resistivity of 4.68 × 10-5â€…Ω cm, and optical transmittance of above 91% in the visible region, which is superior to the sandwich film with the metal embedded layer.

11.
Nat Commun ; 14(1): 4327, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468480

RESUMEN

Molecular diagnostics for crop diseases can guide the precise application of pesticides, thereby reducing pesticide usage while improving crop yield, but tools are lacking. Here, we report an in-field molecular diagnostic tool that uses a cheap colorimetric paper and a smartphone, allowing multiplexed, low-cost, rapid detection of crop pathogens. Rapid nucleic acid amplification-free detection of pathogenic RNA is achieved by combining toehold-mediated strand displacement with a metal ion-mediated urease catalysis reaction. We demonstrate multiplexed detection of six wheat pathogenic fungi and an early detection of wheat stripe rust. When coupled with a microneedle for rapid nucleic acid extraction and a smartphone app for results analysis, the sample-to-result test can be completed in ~10 min in the field. Importantly, by detecting fungal RNA and mutations, the approach allows to distinguish viable and dead pathogens and to sensitively identify mutation-carrying fungicide-resistant isolates, providing fundamental information for precision crop disease management.


Asunto(s)
Basidiomycota , ARN , Patología Molecular , Teléfono Inteligente , Hongos/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Basidiomycota/genética , Mutación
12.
Cancer Med ; 12(17): 17648-17659, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37501393

RESUMEN

BACKGROUND: Cervical lymph node metastasis (CLNM) is common in patients with differentiated thyroid carcinoma (DTC); however, the efficiency to distinguish CLNM before surgery is limited. T cell exhaustion, characterized by the overexpression of immune checkpoints, plays a critical role in the immune evasion of tumors. The aim of this study is to analyze the association between serum levels of soluble immune checkpoints (sICs) and CLNM in DTC patients. METHODS: Levels of sICs in serum of 71 DTC patients and 56 healthy volunteers were analyzed by ELISA. Peripheral blood mononuclear cells and cervical lymph nodes of DTC patients were isolated and their expression of sICs were analyzed. Lymphocytes in cervical lymph nodes were analyzed for immune checkpoints expression and transcription of exhaustion-associated factors. 30 out of 71 DTC patients were followed up from 3 to 9 months after the operation, and postoperative sTIM-3 were analyzed. RESULTS: Four sICs, including LAG-3, PD-1, PD-L1, and TIM-3, were increased in DTC patients. All four sICs exhibited higher sensitivity at discriminating CLNM than cervical ultrasound. In the patient-matched comparison, higher sTIM-3 levels were observed in tumor-involved lymph nodes (TILNs) than in normal lymph nodes (nLNs). T lymphocytes in TILNs had higher TIM-3 surface expression and increased secretion of sTIM-3 than those in patient-matched nLNs. Finally, postoperative serum sTIM-3 levels were decreased in DTC patients with CLNM compared to their preoperative levels. CONCLUSION: Serum levels of sICs, especially sTIM-3, could help to predict CLNM and provide evidence for surgical decision-making in DTC.


Asunto(s)
Adenocarcinoma , Neoplasias de la Tiroides , Humanos , Receptor 2 Celular del Virus de la Hepatitis A , Metástasis Linfática/patología , Leucocitos Mononucleares/patología , Neoplasias de la Tiroides/patología , Ganglios Linfáticos/patología , Adenocarcinoma/patología , Estudios Retrospectivos
13.
Nature ; 618(7967): 1017-1023, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316672

RESUMEN

The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.


Asunto(s)
Diacilglicerol Colinafosfotransferasa , Resistencia a la Enfermedad , Edición Génica , Oryza , Fitomejoramiento , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Edición Génica/métodos , Genoma de Planta/genética , Oryza/enzimología , Oryza/genética , Oryza/microbiología , Fosfatidilinositoles/metabolismo , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Alelos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Diacilglicerol Colinafosfotransferasa/genética , Diacilglicerol Colinafosfotransferasa/metabolismo
14.
Mol Breed ; 43(2): 13, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37313130

RESUMEN

Wheat is an essential food crop and its high and stable yield is suffering from great challenges due to the limitations of current breeding technology and various stresses. Accelerating molecularly assisted stress-resistance breeding is critical. Through a meta-analysis of published loci in wheat over the last two decades, we selected 60 loci with main breeding objectives, high heritability, and reliable genotyping, such as stress resistance, yield, plant height, and resistance to spike germination. Then, using genotyping by target sequencing (GBTS) technology, we developed a liquid phase chip based on 101 functional or closely linked markers. The genotyping of 42 loci was confirmed in an extensive collection of Chinese wheat cultivars, indicating that the chip can be used in molecular-assisted selection (MAS) for target breeding goals. Besides, we can perform the preliminary parentage analysis with the genotype data. The most significant contribution of this work lies in translating a large number of molecular markers into a viable chip and providing reliable genotypes. Breeders can quickly screen germplasm resources, parental breeding materials, and intermediate materials for the presence of excellent allelic variants using the genotyping data by this chip, which is high throughput, convenient, reliable, and cost-efficient. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01359-3.

15.
Plant Cell Rep ; 42(8): 1379-1390, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37227494

RESUMEN

KEY MESSAGE: This study provides important information on the genetic basis of GCaC in wheat, thus contributing to breeding efforts to improve the nutrient quality of wheat. Calcium (Ca) plays important roles in the human body. Wheat grain provides the main diet for billions of people worldwide but is low in Ca content. Here, grain Ca content (GCaC) of 471 wheat accessions was determined in four field environments. A genome-wide association study (GWAS) was performed to reveal the genetic basis of GCaC using the phenotypic data form four environments and a wheat 660 K single nucleotide polymorphism (SNP) array. Twelve quantitative trait locus (QTLs) for GCaC were identified on chromosomes 1A, 1D, 2A, 3B, 6A, 6D, 7A, and 7D, which was significant in at least two environments. Haplotype analysis revealed that the phenotypic difference between the haplotypes of TraesCS6D01G399100 was significant (P ≤ 0.05) across four environments, suggesting it as an important candidate gene for GCaC. This research enhances our understanding of the genetic architecture of GCaC for further improving the nutrient quality of wheat.


Asunto(s)
Calcio , Estudio de Asociación del Genoma Completo , Humanos , Mapeo Cromosómico , Triticum/genética , Pan , Fitomejoramiento , Grano Comestible/genética , Variación Genética , Polimorfismo de Nucleótido Simple/genética , Fenotipo
16.
Microbiol Spectr ; 11(3): e0344922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036374

RESUMEN

Wheat sharp eyespot caused by Rhizoctonia cerealis is primarily a severe threat to worldwide wheat production. Currently, there are no resistant wheat cultivars, and the use of fungicides is the primary method for controlling this disease. Elucidating the mechanisms of R. cerealis pathogenicity can accelerate the pace of the control of this disease. Long intergenic noncoding RNAs (lincRNAs) that function in plant-pathogen interactions might provide a new perspective. We systematically analyzed lincRNAs and identified a total of 1,319 lincRNAs in R. cerealis. We found that lincRNAs are involved in various biological processes, as shown by differential expression analysis and weighted correlation network analysis (WGCNA). Next, one of nine hub lincRNAs in the blue module that was related to infection and growth processes, MSTRG.4380.1, was verified to reduce R. cerealis virulence on wheat by a host-induced gene silencing (HIGS) assay. Following that, RNA sequencing (RNA-Seq) analysis revealed that the significantly downregulated genes in the MSTRG.4380.1 knockdown lines were associated mainly with infection-related processes, including hydrolase, transmembrane transporter, and energy metabolism activities. Additionally, 23 novel microRNAs (miRNAs) were discovered during small RNA (sRNA) sequencing (sRNA-Seq) analysis of MSTRG.4380.1 knockdown, and target prediction of miRNAs suggested that MSTRG.4380.1 does not act as a competitive endogenous RNA (ceRNA). This study performed the first genome-wide identification of R. cerealis lincRNAs and miRNAs. It confirmed the involvement of a lincRNA in the infection process, providing new insights into the mechanism of R. cerealis infection and offering a new approach for protecting wheat from R. cerealis. IMPORTANCE Rhizoctonia cerealis, the primary causal agent of wheat sharp eyespot, has caused significant losses in worldwide wheat production. Since no resistant wheat cultivars exist, chemical control is the primary method. However, this approach is environmentally unfriendly and costly. RNA interference (RNAi)-mediated pathogenicity gene silencing has been proven to reduce the growth of Rhizoctonia and provides a new perspective for disease control. Recent studies have shown that lincRNAs are involved in various biological processes across species, such as biotic and abiotic stresses. Therefore, verifying the function of lincRNAs in R. cerealis is beneficial for understanding the infection mechanism. In this study, we reveal that lincRNAs could contribute to the virulence of R. cerealis, which provides new insights into controlling this pathogen.


Asunto(s)
MicroARNs , ARN Largo no Codificante , ARN Pequeño no Traducido , Triticum/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Pequeño no Traducido/metabolismo , Enfermedades de las Plantas
17.
Front Plant Sci ; 14: 1169858, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077637

RESUMEN

Introduction: Zinc (Zn) deficiency causes serious diseases in people who rely on cereals as their main food source. However, the grain zinc concentration (GZnC) in wheat is low. Biofortification is a sustainable strategy for reducing human Zn deficiency. Methods: In this study, we constructed a population of 382 wheat accessions and determined their GZnC in three field environments. Phenotype data was used for a genome-wide association study (GWAS) using a 660K single nucleotide polymorphism (SNP) array, and haplotype analysis identified an important candidate gene for GZnC. Results: We found that GZnC of the wheat accessions showed an increasing trend with their released years, indicating that the dominant allele of GZnC was not lost during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnC were identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes of this gene showed, significant difference (P ≤ 0.05) in three environments. Discussion: A novel QTL was first identified on chromosome 6D, this finding enriches our understanding of the genetic basis of GZnC in wheat. This study provides new insights into valuable markers and candidate genes for wheat biofortification to improve GZnC.

18.
Anal Chem ; 95(11): 4966-4973, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36890667

RESUMEN

Fungicide abuse leads to the emergence of fungicide-resistant fungal pathogens, thus posing a threat to agriculture and food safety. Here, we developed an isothermal amplification refractory mutation system (termed iARMS) allowing us to resolve genetic mutations, enabling rapid, sensitive, and potentially field-applicable detection of fungicide-resistant crop fungal pathogens. iARMS yielded a limit of detection of 25 aM via a cascade signal amplification strategy of recombinase polymerase amplification (RPA) and Cas12a-mediated collateral cleavage at 37 °C within 40 min. Specificity for fungicide-resistant Puccinia striiformis (P. striiformis) detection was guaranteed by RPA primers and the flexible sequence of gRNA. The iARMS assay allowed us to detect as low as 0.1% cyp51-mutated P. striiformis that showed resistance to the demethylase inhibitor (DMI), which was 50 times more sensitive than the sequencing techniques. Thus, it is promising for the discovery of rare fungicide-resistant isolates. We applied iARMS to investigate the emergence of fungicide-resistant P. striiformis in western China and found that its proportion was over 50% in Qinghai, Sichuan, and Xinjiang Province. iARMS can serve as a molecular diagnostic tool for crop diseases and facilitate precision plant disease management.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Mutación , Hongos , Inocuidad de los Alimentos , China , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Recombinasas
19.
Theor Appl Genet ; 136(3): 39, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897402

RESUMEN

KEY MESSAGE: Fine mapping of a major stripe rust resistance locus QYrXN3517-1BL to a 336 kb region that includes 12 candidate genes. Utilization of genetic resistance is an effective strategy to control stripe rust disease in wheat. Cultivar XINONG-3517 (XN3517) has remained highly resistant to stripe rust since its release in 2008. To understand the genetic architecture of stripe rust resistance, Avocet S (AvS) × XN3517 F6 RIL population was assessed for stripe rust severity in five field environments. The parents and RILs were genotyped by using the GenoBaits Wheat 16 K Panel. Four stable QTL from XINONG-3517 were detected on chromosome arms 1BL, 2AL, 2BL, and 6BS, named as QYrXN3517-1BL, QYrXN3517-2AL, QYrXN3517-2BL, and QYrXN3517-6BS, respectively. Based on the Wheat 660 K array and bulked segregant exome sequencing (BSE-Seq), the most effective QTL on chromosome 1BL is most likely different from the known adult plant resistance gene Yr29 and was mapped to a 1.7 cM region [336 kb, including twelve candidate genes in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0]. The 6BS QTL was identified as Yr78, and the 2AL QTL was probably same as QYr.caas-2AL or QYrqin.nwafu-2AL. The novel QTL on 2BL was effective in seedling stage against the races used in phenotyping. In addition, allele-specifc quantitative PCR (AQP) marker nwafu.a5 was developed for QYrXN3517-1BL to assist marker-assisted breeding.


Asunto(s)
Basidiomycota , Sitios de Carácter Cuantitativo , Triticum/genética , Secuenciación del Exoma , Resistencia a la Enfermedad/genética , Fitomejoramiento , Estudios de Asociación Genética , Enfermedades de las Plantas/genética
20.
J Exp Bot ; 74(8): 2740-2753, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36807675

RESUMEN

The root-associated microbiomes play important roles in plant growth. However, it is largely unknown how wheat variety evolutionary relatedness shapes each subcommunity in the root microbiome and, in turn, how these microbes affect wheat yield and quality. Here we studied the prokaryotic communities associated with the rhizosphere and root endosphere in 95 wheat varieties at regreening and heading stages. The results indicated that the less diverse but abundant core prokaryotic taxa occurred among all varieties. Among these core taxa, we identified 49 and 108 heritable amplicon sequence variants, whose variations in relative abundances across the root endosphere and rhizosphere samples were significantly affected by wheat variety. The significant correlations between phylogenetic distance of wheat varieties and prokaryotic community dissimilarity were only observed in non-core and abundant subcommunities in the endosphere samples. Again, wheat yield was only significantly associated with root endosphere microbiota at the heading stage. Additionally, wheat yield could be predicted using the total abundance of 94 prokaryotic taxa as an indicator. Our results demonstrated that the prokaryotic communities in the root endosphere had higher correlations with wheat yield and quality than those in the rhizosphere; thus, managing root endosphere microbiota, especially core taxa, through agronomic practices and crop breeding, is important for promoting wheat yield and quality.


Asunto(s)
Microbiología del Suelo , Triticum , Triticum/genética , Filogenia , Raíces de Plantas/genética , Fitomejoramiento , Rizosfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA