Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081244

RESUMEN

To improve the accuracy of vibration velocity monitoring during blasting in soil layers, this paper provides a method and device for data correction by combining finite element software and actual engineering test data. Based on the length of the test pedestal exposed to the surface of the geotechnical body, the finite element structural model corresponding to each length of the test pedestal is established. Moreover, a predetermined external excitation load is applied outside the finite element model and the correction function of the vibration data is obtained by analysis of the stress and vibration data. The device solves the problem of low accuracy of vibration velocity measurement in soil and establishes a correction method for measurement data. The results show the following: (1) With the propagation of blasting seismic waves, the maximum stress values of the test device appear in the footwall position, the middle of the extension rod, and the bottom position in that order. (2) At the end of the test, there is an obvious phenomenon of speed amplification at the top of the test device. (3) As the length of the test device exposed to the ground increases, the particle peak vibration velocity (PPV) of the test device varies exponentially with the PPV of the ground and the range of variation of the vibration velocity in the X-direction is the largest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA