Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38542604

RESUMEN

In this work, the major methods for implementing flexible sensing technology-flexible surface acoustic wave (SAW) sensors-are summarized; the working principles and device characteristics of the flexible SAW sensors are introduced; and the latest achievements of the flexible SAW sensors in the selection of the substrate materials, the development of the piezoelectric thin films, and the structural design of the interdigital transducers are discussed. This paper focuses on analyzing the research status of physical flexible SAW sensors such as temperature, humidity, and ultraviolet radiation, including the sensing mechanism, bending strain performance, device performance parameters, advantages and disadvantages, etc. It also looks forward to the development of future chemical flexible SAW sensors for gases, the optimization of the direction of the overall device design, and systematic research on acoustic sensing theory under strain. This will enable the manufacturing of multifunctional and diverse sensors that better meet human needs.

2.
Anal Methods ; 14(16): 1611-1622, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35383795

RESUMEN

The uniformity and compactness of the surface of a viscoelastic sensitive film are among the most important factors that influence the characteristics of a surface acoustic wave (SAW) gas sensor, directly affecting the detection sensitivity of a SAW sensor on a target gas. In this paper, poly(epichlorohydrin) (PECH) with viscoelastic properties was used as sensitive film for the detection of 2-chloroethyl ethyl sulfide (CEES), a common simulant of the chemical agent mustard gas. Nanoscale films were prepared using a spin coating technology on a SAW delay line of 200 MHz. Films were evaluated using polarizing microscopy and atomic force microscopy and observed with uniform surface states and particle diameter in the cluster region of 4.52-5.22 µm. The interface parameters, including contact angle, surface tension, Gibbs free energy, work of adhesion, work of immersion, and spreading coefficient values were 9.31° to 39.63°, 22.475 to 29.945 mN m-1, -85.70 to -78.08 J m-2, 78.08 to 85.70 J m-2, -42.62 to -35.00 J m-2, and 0.46 to 8.08 J m-1, respectively. These values were obtained by experiments combined with the Young T equation and Gibbs adsorption isotherm, and the surface analysis was carried out theoretically. The glass transition temperature (-22.4 °C), viscosity, pyrolysis, and other physical characteristics of the prepared PECH were discussed. Five SAW sensors prepared at the same time were used to test the repeatability of CEES measurements at one concentration, where the consistency of the sensor preparation was confirmed. At a concentration of 13.6 mg m-3 for CEES, 10 consecutive detection results showed good repeatability (i.e., standard deviation = 0.295, coefficient of variance = 0.021, and population mean deviation = 0.364). At room temperature (20 °C ± 5 °C), different concentrations of CEES were detected using the developed sensor, which showed good linearity in the concentration range of 1.9-19.6 mg m-3 (y = 0.0309 + 1.13x, r = 0.99478). The limit of detection was 0.85 mg m-3, the limit of quantitation was 1.91 mg m-3, and the sensitivity of the SAW sensor was 1.13 mV (mg m-3). The adsorption mechanism related to PECH in the detection of CEES was also discussed.


Asunto(s)
Epiclorhidrina , Sonido , Adsorción , Poli A , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA