Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 265, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068456

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) is presently recognized as the most prevalent kidney tumor. However, the role and underlying mechanism of action of the conversion factor-inducible protein (TGFBI), an extracellular matrix protein, in RCC remain poorly understood. METHODS: In this study, we employed Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry techniques to assess the expression of TGFBI in RCC tissues or cells. Furthermore, we analyzed the proliferation and migration of RCC cells using CCK8, cloning, scratching, and migration assays. Additionally, we examined apoptosis and cell cycle progression through flow cytometry, analysis. Lastly, we employed gene set enrichment analysis (GSEA) to investigate the biological processes associated with TGFBI, which were subsequently validated. RESULTS: The findings indicate that TGFBI exhibits significantly elevated expression levels in both renal cell carcinoma (RCC) tissues and cells. Furthermore, the knockdown of TGFBI in SiRNA transfected cells resulted in the inhibition of RCC cell proliferation, migration, invasiveness, apoptosis, and alteration of the cell cycle. Additionally, TGFBI was found to impede the epithelial-mesenchymal transition (EMT) process in RCC cells. Bioinformatics analysis suggests that TGFBI may exert its influence on various biological processes in RCC through the tumor immune microenvironment. Moreover, our study demonstrates that TGFBI promotes RCC progression by activating the PI3K/AKT/mTOR/HIF-1α. CONCLUSIONS: Our research indicates that TGFBI exhibits high expression in RCC and facilitate RCC progression and metastasis through various molecular mechanisms. Hence, TGFBI has the potential to be a novel therapeutic target for the diagnosis and treatment of RCC in the future.

2.
Int Immunopharmacol ; 129: 111650, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38342062

RESUMEN

Renal fibrosis is a key feature of chronic kidney disease (CKD) progression, whereas no proven effective anti-fibrotic treatments. Forsythiaside A (FTA), derived from Forsythia suspense, has been found to possess nephroprotective properties. However, there is limited research on its anti-fibrotic effects, and its mechanism of action remains unknown. This study aimed to investigate the suppressive effects of FTA on renal fibrosis and explore the underlying mechanisms. In vitro, we established a HK2 cell model induced by transforming growth factor ß1 (TGF-ß1), and in vivo, we used a mice model induced by unilateral ureteral obstruction (UUO). CCK-8 assay, qRT-PCR, Western blotting, immunofluorescence, flow cytometry, histological staining, immunohistochemistry, TUNEL assay, RNA transcriptome sequencing, and molecular docking were performed. The results showed that FTA (40 µM or 80 µM) treatment improved cell viability and suppressed TGF-ß1-induced fibrotic changes and partial epithelial-mesenchymal transition (EMT). Furthermore, FTA treatment reversed the activation of the PI3K/AKT signaling pathway, and THBS1 was identified as the target gene. We found that THBS1 knockdown suppressed the activation of the PI3K/AKT signaling pathway and reduced the fibrosis and partial EMT-related protein level. Conversely, THBS1 overexpression activated the PI3K/AKT signaling pathway and exacerbated renal fibrosis and partial EMT. In vivo, mice were administered FTA (30 or 60 mg/kg) for 2 weeks, and the results demonstrated that FTA administration significantly mitigated tubular injury, tubulointerstitial fibrosis, partial EMT, and apoptosis. In conclusion, FTA inhibited renal fibrosis and partial EMT by targeting THBS1 and inhibiting activation of the PI3K/AKT pathway.


Asunto(s)
Glicósidos , Insuficiencia Renal Crónica , Obstrucción Ureteral , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Obstrucción Ureteral/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Transición Epitelial-Mesenquimal , Fibrosis , Riñón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA