Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Dalton Trans ; 53(5): 2242-2251, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193857

RESUMEN

The magnetic and electronic structures of Fe4O5 have been investigated at ambient and high pressures via a combination of representation analysis, density functional theory (DFT+U) calculations, and Mössbauer spectroscopy. A few spin configurations corresponding to the different irreducible representations have been considered. The total-energy calculations reveal that the magnetic ground state of Fe4O5 corresponds to an orthogonal spin order. Depending on the magnetic propagation vector k, two spin-ordered phases with minimal energy differences are realized. The lowest energy magnetic phase is related to k = (0, 0, 0) and is characterized by ferromagnetic ordering of iron magnetic moments at prismatic sites along the b-axis and antiferromagnetic ordering of iron moments at octahedral sites along the c-axis. For the k = (1/2, 0, 0) phase, the moments in the prisms are antiferromagnetically ordered along the b-axis and the moments in the octahedra are still antiferromagnetically ordered along the c-axis. Under high pressure, Fe4O5 exhibits magnetic transitions with the corresponding electronic transitions of the metal-insulator type. At a critical pressure PC ∼ 60 GPa, the Fe ions at the octahedral sites undergo a high-spin to low-spin state crossover with a decrease in the unit-cell volume of ∼4%, while the Fe ions at the prismatic sites remain in the high-spin state up to 130 GPa. This site-dependent magnetic collapse is experimentally observed in the transformation of Mössbauer spectra measured at room temperature and high pressures.

2.
Phys Chem Chem Phys ; 23(46): 26376-26384, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34792064

RESUMEN

The magnetic properties of M2AX (M = Mn, Fe; A = Al, Ga, Si, Ge; X = C, N) phases were studied within DFT-GGA. The magnetic electronic ground state is determined. The investigation of the phase stability of M2AX phases is performed by comparing the total energy of MAX phases to that of the set of competitive phases for calculation of the phase formation enthalpy. As the result of such an approach, we have found one stable compound (Mn2GaC), and seven metastable ones. It is shown that several metastable MAX phases (Mn2AlC, Fe2GaC, Mn2GeC, and Mn2GeN) become stable at a small applied pressure (1.5-7 GPa). The mechanical, electronic and elastic properties of metastable MAX phases are studied.

3.
Dalton Trans ; 50(28): 9735-9745, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34165472

RESUMEN

The ludwigite Co2FeBO5 has been studied experimentally using 57Fe Mössbauer spectroscopy and theoretically using DFT + GGA calculations. The room-temperature Mössbauer spectra are composed of four quadrupole doublets corresponding to the high-spin Fe3+ ions in octahedral oxygen coordination. All components undergo splitting below 117 K due to the magnetic hyperfine fields. The DFT + GGA calculations performed for three models of Fe ion distributions have revealed that the ground state corresponds to the "Fe4(HS)" model with the high-spin Fe3+ ions located at the M4 site and the high-spin Co2+ ions located at the M1, M2, and M3 sites. A ferrimagnetic ground state, with the Co and Fe magnetic moments being nearly parallel to the b-axis and a total magnetic moment of circa 1.1µB f.u.-1, was found. The other Fe distributions cause an increase in the local octahedral distortions and transformation of the spin state. The calculated quadrupole splitting values are in good agreement with the experimental values obtained by Mössbauer spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA