Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 69(13): 2136-2148, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777682

RESUMEN

Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity's exploration of deep space. Over the past decade, the Chinese Lunar Exploration Program (CLEP), also known as the Chang'e (CE) Project, has achieved remarkable milestones. It has successfully developed and demonstrated the engineering capability required to reach and return from the lunar surface. Notably, the CE Project has made historic firsts with the landing and on-site exploration of the far side of the Moon, along with the collection of the youngest volcanic samples from the Procellarum KREEP Terrane. These achievements have significantly enhanced our understanding of lunar evolution. Building on this success, China has proposed an ambitious crewed lunar exploration strategy, aiming to return to the Moon for scientific exploration and utilization. This plan encompasses two primary phases: the first crewed lunar landing and exploration, followed by a thousand-kilometer scale scientific expedition to construct a geological cross-section across the lunar surface. Recognizing the limitations of current lunar exploration efforts and China's engineering and technical capabilities, this paper explores the benefits of crewed lunar exploration while leveraging synergies with robotic exploration. The study refines fundamental lunar scientific questions that could lead to significant breakthroughs, considering the respective engineering and technological requirements. This research lays a crucial foundation for defining the objectives of future lunar exploration, emphasizing the importance of crewed missions and offering insights into potential advancements in lunar science.

2.
Nat Commun ; 11(1): 1289, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32157094

RESUMEN

Diogenites are a group of meteorites that are derived from the interior of the largest protoplanet Vesta. They provide a unique opportunity to understanding together the internal structure and dynamic evolution of this protoplanet. Northwest Africa (NWA) 8321 was suggested to be an unbrecciated noritic diogenite meteorite, which is confirmed by our oxygen and chromium isotopic data. Here, we find that olivine in this sample has been partly replaced by orthopyroxene, troilite, and minor metal. The replacement texture of olivine is unambiguous evidence of sulfur-involved metasomatism in the interior of Vesta. The presence of such replacement texture suggests that in NWA 8321, the olivine should be of xenolith origin while the noritic diogenite was derived from partial melting of pre-existing rocks and had crystallized in the interior of Vesta. The post-Rheasilvia craters in the north-polar region on Vesta could be the potential source for NWA 8321.

3.
Nat Commun ; 7: 12844, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27682449

RESUMEN

Chondritic meteorites, consisting of the materials that have formed in the early solar system (ESS), have been affected by late thermal events and fluid activity to various degrees. Determining the timing of fluid activity in ESS is of fundamental importance for understanding the nature, formation, evolution and significance of fluid activity in ESS. Previous investigations have determined the relative ages of fluid activity with short-lived isotope systematics. Here we report an absolute 207Pb/206Pb isochron age (4,450±50 Ma) of apatite from Dar al Gani (DaG) 978, a type ∼3.5, ungrouped carbonaceous chondrite. The petrographic, mineralogical and geochemical features suggest that the apatite in DaG 978 should have formed during metamorphism in the presence of a fluid. Therefore, the apatite age represents an absolute age for fluid activity in an asteroidal setting. An impact event could have provided the heat to activate this young fluid activity in ESS.

4.
Sci Rep ; 6: 26063, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27181381

RESUMEN

High-pressure minerals in meteorites are important records of shock events that have affected the surfaces of planets and asteroids. A widespread distribution of impact craters has been observed on the Vestan surface. However, very few high-pressure minerals have been discovered in Howardite-Eucrite-Diogenite (HED) meteorites. Here we present the first evidence of tissintite, vacancy-rich clinopyroxene, and super-silicic garnet in the eucrite Northwest Africa (NWA) 8003. Combined with coesite and stishovite, the presence of these high-pressure minerals and their chemical compositions reveal that solidification of melt veins in NWA 8003 began at a pressure of >~10 GPa and ceased when the pressure dropped to <~8.5 GPa. The shock temperature in the melt veins exceeded 1900 °C. Simulation results show that shock events that create impact craters of ~3 km in diameter (subject to a factor of 2 uncertainty) are associated with sufficiently high pressures to account for the occurrence of the high-pressure minerals observed in NWA 8003. This indicates that HED meteorites containing similar high-pressure minerals should be observed more frequently than previously thought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA