Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Stroke Vasc Neurol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366758

RESUMEN

BACKGROUND: Enterobacterial translocation is a leading contributor to fatal infection among patients with acute ischaemic stroke (AIS). Accumulative evidence suggests that mesenchymal stem cell (MSC) effectively ameliorates stroke outcomes. Whether MSC could inhibit post-stroke enterobacterial translocation remains elusive. METHODS: Patients with AIS and healthy individuals were enrolled in the study. Mice subjected to transient middle cerebral artery occlusion were treated with bone marrow-derived MSC (BM-MSC) right after reperfusion. Enterobacterial translocation was evaluated with Stroke Dysbiosis Index and circulating endotoxin. Thickness of mucus was assessed with Alcian blue staining. Hepatic glucocorticoid (GC) metabolism was analysed with expression of HSD11B2, HSD11B1 and SRD5A1. RESULTS: We report that the gut mucus layer was attenuated after the stroke leading to pronounced enterobacterial translocation. The attenuation of the gut mucus was attributed to diminished mucin production by goblet cells in response to the elevated systemic GC after cerebral ischaemia. Transferred-BM-MSC restored the mucus thickness, thus preserving gut microbiota homeostasis and preventing enterobacterial invasion. Mechanistically, the transferred-BM-MSC stationed in the liver and enhanced peroxisome proliferator-activated receptor γ signalling in hepatocytes. Consequently, expression of HSD11B2 and SRD5A1 was increased while HSD11B1 expression was downregulated which promoted GC catabolism and subsequently restored mucin production. CONCLUSIONS: Our findings reveal that MSC transfer improves post-stroke gut barrier integrity and inhibits enterobacterial translocation by enhancing the hepatic GC metabolism thus representing a protective modulator of the liver-gut-brain axis in AIS.

2.
Clin Chim Acta ; 565: 119962, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244142

RESUMEN

BACKGROUND: Little is known about the association between serum neuron-specific enolase (NSE) concentration and anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. This study aims to investigate if serum NSE concentration is related to the clinical features of anti-NMDAR encephalitis. METHODS: Serum NSE levels were detected in 58 anti-NMDAR encephalitis cases, 58 matched healthy controls and 58 matched disease controls. Demographic features, clinical symptoms, cerebrospinal fluid parameters and brain MRI indexes of the cases were evaluated. RESULTS: Serum NSE concentrations were significant higher in case group than those in healthy controls and disease controls (both p < 0.001). Serum NSE concentrations in patients with mRS≥3 one year after onset were obviously higher than in those with mRS<3 (p < 0.001). Patients with status epilepticus or central hypoventilation had higher serum NSE levels than those without (p = 0.003 and p = 0.006). Serum NSE concentrations in cases with brain lesions or brain atrophy were significant higher than in those without (p = 0.001 and p < 0.001, respectively). Serum NSE concentrations were found to be significant higher in cases with limited response to treatment compared to those with favourable therapy outcomes (p < 0.001). Spearman's correlation analysis showed a significant positive association between serum NSE concentration and mRS score at the most critical time (max mRS) (r = 0.575, p < 0.001) and one year after onset (r = 0.705, p < 0.001). Cox regression results reflected that high serum NSE level was an independent predictor of poor prognosis in anti-NMDAR encephalitis group (p = 0.001), and the ROC curve threshold value was 15.72 ng/ml. CONCLUSIONS: Serum NSE concentrations in anti-NMDAR encephalitis cases are higher than those in controls. It can be used to predict the brain damage degree and prognosis of anti-NMDAR encephalitis cases.

3.
J Immunol Res ; 2024: 4751168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104594

RESUMEN

In recent years, as the aging population continues to grow, osteoarthritis (OA) has emerged as a leading cause of disability, with its incidence rising annually. Current treatments of OA include exercise and medications in the early stages and total joint replacement in the late stages. These approaches only relieve pain and reduce inflammation; however, they have significant side effects and high costs. Therefore, there is an urgent need to identify effective treatment methods that can delay the pathological progression of this condition. The changes in the articular cartilage microenvironment, which are complex and diverse, can aggravate the pathological progression into a vicious cycle, inhibiting the repair and regeneration of articular cartilage. Understanding these intricate changes in the microenvironment is crucial for devising effective treatment modalities. By searching relevant research articles and clinical trials in PubMed according to the keywords of articular cartilage, microenvironment, OA, mechanical force, hypoxia, cytokine, and cell senescence. This study first summarizes the factors affecting articular cartilage regeneration, then proposes corresponding treatment strategies, and finally points out the future research direction. We find that regulating the opening of mechanosensitive ion channels, regulating the expression of HIF-1, delivering growth factors, and clearing senescent cells can promote the formation of articular cartilage regeneration microenvironment. This study provides a new idea for the treatment of OA in the future, which can promote the regeneration of articular cartilage through the regulation of the microenvironment so as to achieve the purpose of treating OA.


Asunto(s)
Cartílago Articular , Microambiente Celular , Osteoartritis , Regeneración , Humanos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Cartílago Articular/fisiología , Osteoartritis/terapia , Osteoartritis/patología , Animales , Condrocitos/metabolismo , Condrocitos/fisiología , Senescencia Celular
4.
Cell Signal ; 121: 111294, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996954

RESUMEN

BACKGROUND: Osteoporosis (OP) is a prevalent disease associated with age, and one of the primary pathologies is the defect of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This study aimed to elucidate whether Nuclear Receptor Binding SET Domain Protein 2 (NSD2) transcriptionally regulates osteogenic differentiation of BMSCs in osteoporosis. METHODS: Identification of human BMSCs (hBMSCs) in vitro was measured by flow cytometry. Osteogenesis of hBMSCs in vitro was measured by Alizarin Red and Alkaline Phosphatase staining. The protein levels of H3K36me1/2/3, NSD2, and Hoxa2 were measured by western blotting. The mRNA levels of NSD2, Runx2, and BSP were measured by qPCR. The role of NSD2 in the osteogenic differentiation of BMSCs was further identified by silencing NSD2 via shRNA or overexpression of NSD2 via lentivirus transfection. The interactions of NSD2, H3K36me2 and Hoxa2 were identified via chromatin immunoprecipitation (ChIP). Luciferase reporting analysis was employed to confirm that NSD2 regulated the transcriptional activity of Hoxa2. Ovariectomized (OVX) was performed on mice to construct osteoporosis (OP) model. Subsequently, the bone mass was assessed by micro computed tomography (micro-CT) scan. RESULTS: During the osteogenesis of OP-derived hBMSCs, the levels of NSD2 and H3K36me2 significantly increased in 14 days of osteogenic induction. Inhibition of NSD2 via shRNA increased the RUNX2 and BSP expression of hBMSCs, while overexpression of NSD2 decreased RUNX2 and BSP expression of hBMSCs. ChIP analysis indicated NSD2-mediated H3K36me2 reduced the osteogenic differentiation of hBMSCs by regulating the osteogenic inhibitor Hoxa2. Accordingly, inhibition of NSD2 in vivo via tail vein injection of LV-shNSD2 lentivirus greatly alleviated OVX-induced osteoporosis in mice. CONCLUSION: We demonstrated that NSD2 inhibited the osteogenic differentiation in hBMSCs by transcriptionally downregulating Hoxa2 via H3K36me2 dimethylation. Inhibition of NSD2 effectively attenuated bone loss in murine osteoporosis and NSD2 is a promising target for clinical treatment of osteoporosis.


Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/metabolismo , Osteoporosis/patología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Humanos , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Femenino , Histonas/metabolismo , Proteínas Represoras/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones Endogámicos C57BL , Células Cultivadas
5.
Bone Res ; 12(1): 15, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433252

RESUMEN

Osteoarthritis (OA) is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA. These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium. In this study, we found that phosphoglycerate mutase 5 (PGAM5) significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models. To address the role of PGAM5 in macrophages in OA, we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo. Mechanistically, we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways, whereas inhibited M2 polarization via STAT6-PPARγ pathway in murine bone marrow-derived macrophages. Furthermore, we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2 (DVL2) which resulted in the inhibition of ß-catenin and repolarization of M2 macrophages into M1 macrophages. Conditional knockout of both PGAM5 and ß-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice. Motivated by these findings, we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection, which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis. Collectively, these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.


Asunto(s)
Osteoartritis , Fosfoglicerato Mutasa , Humanos , Animales , Ratones , beta Catenina , Osteoartritis/genética , Inflamación , Macrófagos , Fosfoproteínas Fosfatasas , Proteínas Mitocondriales
6.
PeerJ ; 12: e16768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250727

RESUMEN

Background: Recent studies have shown that activated pyroptosis in atopic dermatitis (AD) switches inflammatory processes and causes abnormal cornification and epidermal barrier dysfunction. Little research has focused on the interaction mechanism between pyroptosis-related genes and human keratinocyte differentiation. Methods: The AD dataset from the Gene Expression Omnibus (GEO) was used to identify differently expressed pyroptosis-related genes (DEPRGs). Hub genes were identified and an enrichment analysis was performed to select epithelial development-related genes. Lesions of AD patients were detected via immunohistochemistry (IHC) to verify the hub gene. Human keratinocytes cell lines, gasdermin D (GSDMD) overexpression, Caspase1 siRNA, Histone Deacetylase1 (HDAC1) siRNA, and HDAC1 overexpression vectors were used for gain-and-loss-of-function experiments. Regulation of cornification protein was determined by qPCR, western blot (WB), immunofluorescence (IF), dual-luciferase reporter assay, co-immunoprecipitation (Co-IP), and chromatin immunoprecipitation (ChIP). Results: A total of 27 DEPRGs were identified between either atopic dermatitis non-lesional skin (ANL) and healthy control (HC) or atopic dermatitis lesional skin (AL) and HC. The enrichment analysis showed that these DEPRGs were primarily enriched in the inflammatory response and keratinocytes differentiation. Of the 10 hub genes identified via the protein-protein interaction network, only GSDMD was statistically and negatively associated with the expression of epithelial tight junction core genes. Furthermore, GSDMD was upregulated in AD lesions and inhibited human keratinocyte differentiation by reducing filaggrin (FLG) expression. Mechanistically, GSDMD activated by Caspase1 reduced FLG expression via HDAC1. HDAC1 decreased FLG expression by reducing histone acetylation at the FLG promoter. In addition, GSDMD blocked the interaction of Potassium Channel Tetramerization Domain Containing 6 (KCTD6) and HDAC1 to prohibit HDAC1 degradation. Conclusion: This study revealed that GSDMD was upregulated in AD lesions and that GSDMD regulated keratinocytes via epigenetic modification, which might provide potential therapeutic targets for AD.


Asunto(s)
Dermatitis Atópica , Histonas , Humanos , Dermatitis Atópica/genética , Proteínas Filagrina , Inmunoprecipitación de Cromatina , Queratinocitos , ARN Interferente Pequeño , Histona Desacetilasa 1/genética , Gasderminas , Proteínas de Unión a Fosfato
7.
Biomater Sci ; 12(5): 1239-1248, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38231128

RESUMEN

The regeneration of tendon and bone junctions (TBJs), a fibrocartilage transition zone between tendons and bones, is a challenge due to the special triphasic structure. In our study, a silk fibroin (SF)-based triphasic scaffold consisting of aligned type I collagen (Col I), transforming growth factor ß (TGF-ß), and hydroxyapatite (HA) was fabricated to mimic the compositional gradient feature of the native tendon-bone architecture. Rat tendon-derived stem cells (rTDSCs) were loaded on the triphasic SF scaffold, and the high cell viability suggested that the scaffold presents good biocompatibility. Meanwhile, increased expressions of tenogenic-, chondrogenic-, and osteogenic-related genes in the TBJs were observed. The in vivo studies of the rTDSC-seeded scaffold in a rat TBJ rupture model showed tendon tissue regeneration with a clear transition zone within 8 weeks of implantation. These results indicated that the biomimetic triphasic SF scaffolds seeded with rTDSCs have great potential to be applied in TBJ regeneration.


Asunto(s)
Fibroínas , Ratas , Animales , Fibroínas/química , Andamios del Tejido/química , Biomimética , Tendones , Células Madre , Ingeniería de Tejidos/métodos , Seda/química
8.
Environ Sci Technol ; 58(5): 2313-2322, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38266164

RESUMEN

Mineral adsorption-induced molecular fractionation of dissolved organic matter (DOM) affects the composition of both DOM and OM adsorbed and thus stabilized by minerals. However, it remains unclear what mineral properties control the magnitude of DOM fractionation. Using a combined technique approach that leverages the molecular composition identified by ultrahigh resolution 21 T Fourier transform ion cyclotron resonance mass spectrometry and adsorption isotherms, we catalogue the compositional differences that occur at the molecular level that results in fractionation due to adsorption of Suwannee River fulvic acid on aluminum (Al) and iron (Fe) oxides and a phyllosilicate (allophane) species of contrasting properties. The minerals of high solubility (i.e., amorphous Al oxide, boehmite, and allophane) exhibited much stronger DOM fractionation capabilities than the minerals of low solubility (i.e., gibbsite and Fe oxides). Specifically, the former released Al3+ to solution (0.05-0.35 mM) that formed complexes with OM and likely reduced the surface hydrophobicity of the mineral-OM assemblage, thus increasing the preference for adsorbing polar DOM molecules. The impacts of mineral solubility are exacerbated by the fact that interactions with DOM also enhance metal release from minerals. For sparsely soluble minerals, the mineral surface hydrophobicity, instead of solubility, appeared to be the primary control of their DOM fractionation power. Other chemical properties seemed less directly relevant than surface hydrophobicity and solubility in fractionating DOM.


Asunto(s)
Materia Orgánica Disuelta , Minerales , Adsorción , Solubilidad , Minerales/química , Aluminio , Óxidos
9.
Cerebrovasc Dis ; 53(1): 88-97, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36996763

RESUMEN

INTRODUCTION: Intracranial branch atheromatous disease (BAD) has been applied to occlusions that occur at the origin of large caliber penetrating arteries due to the microatheromas or large parent artery plaques. This study aimed to explore the association between culprit plaques of large parent arteries, neuroimaging markers of cerebral small vessel disease (CSVD), and the risk of early neurological deterioration (END) in stroke patients with BAD. METHODS: A total of 97 stroke patients with BAD in the vascular territories of the lenticulostriate arteries or paramedian pontine arteries, diagnosed using high-resolution magnetic resonance imaging, were prospectively recruited in this observational study. A culprit plaque in the middle cerebral artery was defined as the only arterial plaque on the ipsilateral side of an infarction visible on diffusion-weighted imaging. A culprit plaque in the basilar artery (BA) was identified when it was observed within the same axial slices of an infarction or on the adjacent upper or lower slice, whereas a plaque within the BA located in the ventral region was considered non-culprit. If more than one plaque was present in the same vascular territory, the most stenotic plaque was chosen for the analysis. Four CSVD neuroimaging markers, including white matter hyperintensity, lacunes, microbleeds, and enlarged perivascular spaces, were evaluated in accordance with the total CSVD score. The associations between neuroimaging features of lesions within large parent arteries, neuroimaging markers of CSVD, and the risk of END in stroke patients with BAD were investigated using logistic regression analysis. RESULTS: END occurred in 41 stroke patients (42.27%) with BAD. The degree of large parent artery stenosis (p < 0.001), culprit plaques of large parent arteries (p < 0.001), and plaque burden (p < 0.001) were significantly different between the END and non-END groups in stroke patients with BAD. In logistic regression analysis, culprit plaques of large parent arteries (odds ratio, 32.258; 95% confidence interval, 4.140-251.346) were independently associated with the risk of END in stroke patients with BAD. CONCLUSIONS: Culprit plaques of large parent arteries could predict the risk of END in stroke patients with BAD. These results suggest that lesions in the large parent arteries, rather than damage to the cerebral small vessels, contribute to END in stroke patients with BAD.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/complicaciones , Placa Aterosclerótica/complicaciones , Imagen por Resonancia Magnética/métodos , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Arteria Cerebral Media , Infarto
10.
Cureus ; 15(9): e45727, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37868468

RESUMEN

Composite lymphoma implies the presence of two or more morphological and immunophenotypical subtypes of lymphoma in a single tissue or organ. Composite lymphoma with concurrent mantle cell lymphoma (MCL) and classical Hodgkin lymphoma is extremely rare. In this case report, we present the case of a 70-year-old male who was diagnosed with a composite of MCL and classical Hodgkin lymphoma (cHL) and achieved near-complete resolution with chemoimmunotherapy. To the best of our knowledge, this is the first case of this kind demonstrating the effectiveness of a combination chemoimmunotherapy regimen leading to complete remission in composite lymphoma involving MCL and cHL. We report the history, imaging findings, and pathology and illustrate the challenges in therapeutic decision-making in managing composite lymphoma patients involving MCL and cHL. We also review the literature on this rare entity and discuss its clinical implications.

11.
Am J Physiol Cell Physiol ; 324(5): C1007-C1016, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939200

RESUMEN

MicroRNAs play a critical role in bone marrow mesenchymal stem cell (MSC) chondrogenesis and regulate the progression of joint regeneration in osteoarthritis. Our previous research confirmed that miR146a relieves osteoarthritis by modulating cartilage homeostasis. However, few studies have revealed the relationship between miR146a and the chondrogenesis of MSCs, and the exact mechanisms remain unclear. This study aimed to determine the function of miR146a in the chondrogenic differentiation of MSCs and the potential mechanisms involved. MiR146a expression increased during chondrogenesis. MiR146a knockout (KO) led to the increased chondrogenesis of MSCs compared to that in wild-type (WT) MSCs, whereas the overexpression of miR146a by mimics resulted in the decreased chondrogenesis of MSCs, as determined by the mRNA expression of collagen, type II, alpha 1 (COL2A1), aggrecan, cartilage oligomeric matrix protein (COMP), and matrix metallopeptidase 13 (MMP13). Furthermore, cartilage defects could be treated better when injected with spheres induced from miR146aKO MSCs than from WT MSCs, indicating that miR146a inhibits chondrogenesis in vivo. In addition, based on miRNA-mRNA prediction analysis and a dual-luciferase reporter assay, we observed that the deletion of miR146a led to the increased expression of Lsm11 during chondrogenesis and demonstrated that miR146a targeted Lsm11 by binding to its 3'-untranslated region (UTR) and inhibited its translation. The inhibition of Lsm11 by silencing RNA (siRNA) reversed the increased ability of chondrogenesis by knocking out miR146a both in vivo and in vitro, suggesting that miR146a inhibits chondrogenesis by directly inhibiting Lsm11 in MSCs, which may be a novel target for treating osteoarthritis.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoartritis , Humanos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
12.
Acta Biomater ; 156: 222-233, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36100177

RESUMEN

It is of significance to construct the immunomodulatory and osteogenic microenvironment for three dimension (3D) regeneration of bone tissues. 3D scaffolds, with various chemical composition, macroporous structure and surface characteristics offer a beneficial microenvironment for bone tissue regeneration. However, there is a gap between the well-ordered surface microstructure of bioceramic scaffolds and immune microenvironment for bone regeneration. In this study, a gear-inspired 3D scaffold with well-ordered surface microstructure was successfully prepared through a modified extrusion-based 3D printing strategy for immunomodulation and bone regeneration. The prepared gear-inspired scaffolds could induce M2 phenotype polarization of macrophages and further promoted osteogenic differentiation of bone mesenchymal stem cells in vitro. The subsequent in vivo study demonstrated that the gear-inspired scaffolds were able to attenuate inflammation and further promote new bone formation. The study develops a facile strategy to construct well-ordered surface microstructure which plays a key role in 3D immunomodulatory and osteogenic microenvironment for bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE.


Asunto(s)
Osteogénesis , Andamios del Tejido , Andamios del Tejido/química , Regeneración Ósea , Ingeniería de Tejidos/métodos , Impresión Tridimensional
13.
J Neurochem ; 164(2): 172-192, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334306

RESUMEN

Acute ischemic stroke (AIS) induces cerebral endothelial cell death resulting in the breakdown of the blood-brain barrier (BBB). Endothelial cell autophagy acts as a protective mechanism against cell death. Autophagy is activated in the very early stages of ischemic stroke and declines after prolonged ischemia. Previous studies have shown that Rubicon can inhibit autophagy. The current study aimed to investigate whether continuous long-term ischemia can inhibit autophagy in endothelial cells after ischemic stroke by regulating the function of Rubicon and its underlying mechanism. Wild-type male C57BL/6J mice were subjected to transient middle cerebral artery occlusion (tMCAO). ROCK1, ROCK2, and NOX2 inhibitors were injected into male mice 1 h before the onset of tMCAO. Disease severity and BBB permeability were evaluated. bEnd.3 cells were cultured in vitro and subjected to oxygen-glucose deprivation (OGD). bEnd.3 cells were pretreated with or without ROCK1, ROCK2, or NOX2 inhibitors overnight and then subjected to OGD. Cell viability and permeability were also evaluated. The expression of Rubicon, ROCK1, and autophagy-related proteins were analyzed. Increased BBB permeability was correlated with Rubicon expression in tMCAO mice and Rubicon was upregulated in endothelial cells subjected to OGD. Autophagy was inhibited in endothelial cells after long-term OGD treatment and knockdown of Rubicon expression restored autophagy and viability in endothelial cells subjected to 6-h OGD. ROCK1 inhibition decreased the interaction between Beclin1 and Rubicon and restored cell viability and autophagy suppressed by 6-h OGD treatment in endothelial cells. Additionally, ROCK1 inhibition suppressed Rubicon, attenuated BBB disruption, and brain injury induced by prolonged ischemia in 6-h tMCAO mice. Prolonged ischemia induced the death of brain endothelial cells and the breakdown of the BBB, thus aggravating brain injury by increasing the interaction of ROCK1 and Rubicon with Beclin1 while inhibiting canonical autophagy. Inhibition of ROCK1 signaling in endothelial cells could be a promising therapeutic strategy to prolong the therapeutic time window in AIS.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Masculino , Ratones , Animales , Células Endoteliales/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Beclina-1/metabolismo , Ratones Endogámicos C57BL , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/metabolismo , Autofagia
14.
Bioact Mater ; 20: 29-40, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35633872

RESUMEN

Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery, however, this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity. Inspired by the high-performance exoskeleton of natural organisms, we set out to apply natural fish scale (FS) modified by calcium silicate nanoparticles (CS NPs) as a new biomaterial (CS-FS) to overcome the challenge. Benefit from its "Bouligand" microstructure, such FS-based scaffold maintained excellent tensile strength (125.05 MPa) and toughness (14.16 MJ/m3), which are 1.93 and 2.72 times that of natural tendon respectively, allowing it to well meet the requirements for rotator cuff tendon repair. Additionally, CS-FS showed diverse bioactivities by stimulating the differentiation and phenotypic maintenance of multiple types of cells participated into the composition of tendon-bone junction, (e.g. bone marrow mesenchymal stem cells (BMSCs), chondrocyte, and tendon stem/progenitor cells (TSPCs)). In both rat and rabbit rotator cuff tear (RCT) models, CS-FS played a key role in the tendon-bone interface regeneration and biomechanical function, which may be achieved by activating BMP-2/Smad/Runx2 pathway in BMSCs. Therefore, natural fish scale -based biomaterials are the promising candidate for clinical tendon repair due to their outstanding strength and bioactivity.

15.
J Clin Neurol ; 18(4): 453-462, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35796271

RESUMEN

BACKGROUND AND PURPOSE: Patients presenting with clinical characteristics that are strongly suggestive of neuromyelitis optica spectrum disorders (NMOSD) have a high risk of developing definite NMOSD in the future. Little is known about the clinical course, treatment, and prognosis of these patients with likely NMOSD at disease onset. METHODS: This study prospectively recruited and visited 24 patients with the limited form of NMOSD (LF-NMOSD) at disease onset from November 2012 to June 2021. Their demographics, clinical course, longitudinal aquaporin-4 immunoglobulin G (AQP4-IgG) serology, MRI, therapeutic management, and outcome data were collected and analyzed. RESULTS: The onset age of the cohort was 38.1±12.0 years (mean±standard deviation). The median disease duration was 73.5 months (interquartile range=44.3-117.0 months), and the follow-up period was 54.2±23.8 months. At the end of the last visit, the final diagnosis was categorized into AQP4-IgG-seronegative NMOSD (n=16, 66.7%), AQP4-IgG-seropositive NMOSD (n=7, 29.2%), or multiple sclerosis (n=1, 4.2%). Seven of the 24 patients (29.2%) experienced conversion to AQP4-IgG seropositivity, and the interval from onset to this serological conversion was 37.9±21.9 months. Isolated/mixed area postrema syndrome (APS) was the predominant onset phenotype (37.5%). The patients with isolated/mixed APS onset showed a predilection for conversion to AQP4-IgG seropositivity. All patients experienced a multiphasic disease course, with immunosuppressive therapy reducing the incidence rates of clinical relapse and residual functional disability. CONCLUSIONS: Definite NMOSD may be preceded by LF-NMOSD, particularly isolated/mixed APS. Intensive long-term follow-up and attack-prevention immunotherapeutic management is recommended in patients with LF-NMOSD.

16.
Eur J Neurol ; 29(9): 2792-2800, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35638372

RESUMEN

BACKGROUND AND PURPOSE: Preventing relapse by immunosuppressants (ISs) is critical for the prognosis of neuromyelitis optica spectrum disorder (NMOSD); however, the optimal duration of IS treatment is still under discussion. The objective was to explore the optimal duration of IS treatment and the risk of IS discontinuation for NMOSD. METHOD: This cohort study was conducted at a major neurological center that housed the largest NMOSD database in South China. Eligible participants were patients with NMOSD undergoing IS treatment. The main outcome measures were changes in relapse risk based on IS treatment duration, clinical outcomes and predictors of relapse following IS discontinuation. RESULTS: In total, 343 patients were included in this study. The duration of IS treatment was strongly associated with a decrease in relapse risk (hazard ratio [HR] 0.53, p < 0.001). Continuous IS treatment resulted in decreased relapse HRs within 5 years of receiving IS medication, with a mild rebound starting at 5 years. Rituximab reduced the risk of NMOSD relapse to approximately zero within 3 years. The rate of relapse after IS withdrawal was high (77.5%). As opposed to other ISs, a delayed relapse following rituximab withdrawal was observed in this study. Longitudinal extensive transverse myelitis (HR = 2.023, p = 0.006) was associated with a higher risk of relapse after IS discontinuation. CONCLUSIONS: Long-term IS medication for NMOSD is generally suitable. Patients with longitudinal extensive transverse myelitis had a higher risk of relapse after IS discontinuation. Future studies should explore individualized strategies of rituximab maintenance treatment.


Asunto(s)
Mielitis Transversa , Neuromielitis Óptica , Acuaporina 4 , Estudios de Cohortes , Duración de la Terapia , Humanos , Inmunosupresores/uso terapéutico , Recurrencia Local de Neoplasia , Neuromielitis Óptica/tratamiento farmacológico , Estudios Retrospectivos , Rituximab/uso terapéutico
17.
Adv Sci (Weinh) ; 9(18): e2200670, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35478383

RESUMEN

Natural tissues are composed of ordered architectural organizations of multiple tissue cells. The spatial distribution of cells is crucial for directing cellular behavior and maintaining tissue homeostasis and function. Herein, an artificial bone bioceramic scaffold with star-, Tai Chi-, or interlacing-shaped multicellular patterns is constructed. The "cross-talk" between mesenchymal stem cells (MSCs) and macrophages can be effectively manipulated by altering the spatial distribution of two kinds of cells in the scaffolds, thus achieving controllable modulation of the scaffold-mediated osteo-immune responses. Compared with other multicellular patterns, the Tai Chi pattern with a 2:1 ratio of MSCs to macrophages is more effective in activating anti-inflammatory M2 macrophages, improving MSCs osteogenic differentiation, and accelerating new bone formation in vivo. In brief, the Tai Chi pattern generates a more favorable osteo-immune environment for bone regeneration, exhibiting enhanced immunomodulation and osteogenesis, which may be associated with the activation of BMP-Smad, Oncostatin M (OSM), and Wnt/ß-catenin signaling pathways in MSCs mediated by macrophage-derived paracrine signaling mediators. The study suggests that the manipulation of cell distribution to improve tissue formation is a feasible approach that can offer new insights for the design of tissue-engineered bone substitutes with multicellular interactions.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Materiales Biocompatibles , Regeneración Ósea , Diferenciación Celular , Osteogénesis/fisiología
18.
Adv Mater ; 33(49): e2104829, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632631

RESUMEN

Bone is a complex mineralized tissue composed of various organic (proteins, cells) and inorganic (hydroxyapatite, calcium carbonate) substances with micro/nanoscale structures. To improve interfacial bioactivity of bone-implanted biomaterials, extensive efforts are being made to fabricate favorable biointerface via surface modification. Inspired by microbially catalyzed mineralization, a novel concept to biologically synthesize the micro/nanostructures on bioceramics, microbial-assisted catalysis, is presented. It involves three processes: bacterial adhesion on biomaterials, production of CO3 2- assisted by bacteria, and nucleation and growth of CaCO3 nanocrystals on the surface of bioceramics. The microbially catalyzed biominerals exhibit relatively uniform micro/nanostructures on the surface of both 2D and 3D α-CaSiO3 bioceramics. The topographic and chemical cues of the grown micro/nanostructures present excellent in vitro and in vivo bone-forming bioactivity. The underlying mechanism is closely related to the activation of multiple biological processes associated with bone regeneration. The study offers a microbially catalytic concept and strategy of fabricating micro/nanostructured biomaterials for tissue regeneration.


Asunto(s)
Materiales Biocompatibles , Nanoestructuras , Materiales Biocompatibles/farmacología , Regeneración Ósea , Catálisis , Durapatita/química , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Osteogénesis
19.
J Clin Apher ; 36(6): 886-892, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34520046

RESUMEN

There is still no optimal treatment for patients with severe anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis refractory to first-line therapy (including intravenous methylprednisolone [IVMP] and intravenous immunoglobulin [IVIG]). A small study has shown that immunoadsorption (IA) is effective in treating anti-NMDAR encephalitis. However, the effectiveness and safety of IA in the treatment of patients with refractory and severe anti-NMDAR encephalitis is not fully known. Four patients with severe anti-NMDAR encephalitis are reported, which were refractory to the first-line immunotherapy including IVMP and IVIG. Immunoadsorption is performed during the fulminant stage of disease, and the effectiveness and safety of IA are assessed. The modified Rankin Scale (mRS) is used to assess neurological conditions before and after IA. Four patients with the most severe form of anti-NMDAR encephalitis (two with teratoma and two with unknown origin) did not respond to one or more rounds of IVMP plus IVIG. They all required intensive care unit (ICU) support including long-term mechanical ventilation, and thus developed ICU-related complications. Gradual and steady improvement was observed after IA treatment. Except for mild hypotension in patient 1, no other adverse events were observed during IA. Two patients had good early overall recovery on discharge. The other two patients had a good outcome with mRS of 2 at the 12-month follow-up. This small case series suggests that IA may be an effective treatment option to accelerate the recovery of patients with severe and refractory anti-NMDAR encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/terapia , Plasmaféresis/métodos , Adulto , Femenino , Estudios de Seguimiento , Humanos , Inmunoglobulinas Intravenosas , Unidades de Cuidados Intensivos , Metilprednisolona/administración & dosificación , Gravedad del Paciente , Recuperación de la Función , Respiración Artificial , Seguridad , Resultado del Tratamiento , Adulto Joven
20.
J Neurol Sci ; 428: 117568, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34247015

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the efficacy and safety of protein A immunoadsorption (IA) for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis resistant to intravenous methylprednisolone (IVMP) and intravenous immunoglobulin (IVIG). METHODS: We prospectively evaluated patients with refractory anti-NMDAR encephalitis, treated with protein A IA. Demographic data, clinical characteristics, modified Rankin Score (mRS), and anti-NMDAR antibodies were documented before and after IA and at follow-up. Clinical improvement was defined as a decrease of mRS ≥1. Adverse events were recorded throughout the study. RESULTS: Ten patients with mRS ≥3 were enrolled and treated with protein A IA; treatment was performed for an average of 5.2 times per patient. Among the nine patients with positive serum anti-NMDAR, the titer decreased in seven patients, of which two became negative. The cerebrospinal fluid (CSF) anti-NMDAR titer decreased in all patients, and one became negative. Anti-NMDAR levels were tested in two patients at follow-up and found to have declined continuously. All patients exhibited clinical improvement with a mRS decline ≥1 after IA treatment (median mRS: 5.0 [range, 3.0-5.0] vs. 4.0 [range, 2.0-4.0], p = 0.014), and the median mRS decreased to 1.0 (range, 0-3.0) at follow-up. After IA, all patients exhibited accelerated recovery. No adverse events were observed during IA treatment. CONCLUSION: Protein A IA may be effective for treating IVMP/IVIG-resistant anti-NMDAR encephalitis and well tolerated. It is necessary to initiate larger-scale prospective controlled studies to validate the efficacy and safety of protein A IA in anti-NMDAR encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Encefalitis Antirreceptor N-Metil-D-Aspartato/terapia , Anticuerpos , Humanos , Inmunoglobulinas Intravenosas , Estudios Prospectivos , Proteína Estafilocócica A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA