Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Nutr ; 11: 1394618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812937

RESUMEN

Background: Dietary strategies play a crucial role in the prevention of kidney stones. While milk is known for its rich nutritional content, its impact on kidney stone formation remains unclear. This study aimed to examine the relationship between milk consumption and the risk of kidney stones among U.S. adults. Methods: We included 24,620 participants aged 20 and older from the National Health and Nutrition Examination Survey (2007-2018). Milk consumption was defined based on each participant's response to the questionnaire item on "Past 30 day milk product consumption." Kidney stones history was self-reported by participants. The analysis employed weighted multivariate logistic regression models, followed by subgroup analyses for result validation, and explored the age-related dynamics of milk consumption's effect on kidney stone risk using a restricted cubic spline model. Results: Adjusted findings revealed that higher milk intake was associated with a decreased risk of kidney stones (odds ratio [OR] = 0.90, 95% confidence interval [CI] 0.85-0.96), notably among women (OR = 0.86, 95% CI 0.80-0.92) but not significantly in men (OR = 0.94, 95% CI 0.86-1.02). Smoothed curves across all ages showed that women consuming milk had a lower incidence of kidney stones than those who did not, particularly with regular consumption. Conclusion: This study uncovered that across all age groups, higher frequency of milk consumption in women is associated with a reduced risk of kidney stones. However, further prospective cohort studies are needed to confirm this finding.

2.
Biomed Pharmacother ; 172: 116268, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359489

RESUMEN

Atherosclerosis is a lipid-driven inflammatory arterial disease, with one crucial factor is oxidized low-density lipoprotein (ox-LDL), which can induce endothelial dysfunction through endoplasmic reticulum stress (ERS). Interleukin-37 (IL-37) exerts vascular protective functions. This study aims to investigates whether IL-37 can alleviate ERS and autophagy induced by ox-LDL, therely potentialy treating atherosclerosis. We found that ox-LDL enhances the wound healing rate in Rat Coronary Artery Endothelial Cells (RCAECs) and IL-37 reduce the ox-LDL-induced pro-osteogenic response, ERS, and autophagy by binding to Smad3. In RCAECs treated with ox-LDL and recombinant human IL-37, the wound healing rate was mitigated. The expression of osteogenic transcription factors and proteins involved in the ERS pathway was reduced in the group pretreated with IL-37 and ox-LDL. However, these responses were not alleviated when Smads silenced. Electron microscopy revealed that the IL-37/Smad3 complex could suppress endoplasmic reticulum autophagy under ox-LDL stimulation. Thus, IL-37 might treat atherosclerosis through its multi-protective effect by binding Smad3.


Asunto(s)
Aterosclerosis , Células Endoteliales , Interleucina-1 , Animales , Humanos , Ratas , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Factores de Transcripción/metabolismo , Interleucina-1/uso terapéutico
3.
J Hazard Mater ; 467: 133423, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359760

RESUMEN

Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.


Asunto(s)
Lignanos , Microbiota , Escatol , Porcinos , Animales , Humanos , Escatol/metabolismo , Triptófano/metabolismo , Compuestos de Bifenilo
4.
mBio ; 15(2): e0309223, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38189270

RESUMEN

The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.


Asunto(s)
Archaea , Proteínas Arqueales , Archaea/genética , Archaea/metabolismo , Genes Esenciales , Genoma Arqueal , Genómica , Fenotipo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo
5.
Integr Zool ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169086

RESUMEN

Different responses or tolerance to thermal stress between invasive and native species can affect the outcome of interactions between climate change and biological invasion. However, knowledge about the physiological mechanisms that modulate the interspecific differences in thermal tolerance is limited. The present study analyzes the metabolic responses to thermal stress by the globally invasive turtle, Trachemys scripta elegans, as compared with two co-occurring native turtle species in China, Pelodiscus sinensis and Mauremys reevesii. Changes in metabolite contents and the expression or enzyme activities of genes involved in energy sensing, glucose metabolism, lipid metabolism, and tricarboxylic acid (TCA) cycle after exposure to gradient temperatures were assessed in turtle juveniles. Invasive and native turtles showed distinct metabolic responses to thermal stress. T. scripta elegans showed greater transcriptional regulation of energy sensors than the native turtles. Enhanced anaerobic metabolism was needed by all three species under extreme heat conditions, but phosphoenolpyruvate carboxykinase and lactate dehydrogenase in the invader showed stronger upregulation or stable responses than the native species, which showed inhibition by high temperatures. These contrasts were pronounced in the muscles of the three species. Regulation of lipid metabolism was observed in both T. scripta elegans and P. sinensis but not in M. reevesii under thermal stress. Thermal stress did not inhibit the TCA cycle in turtles. Different metabolic responses to thermal stress may contribute to interspecific differences in thermal tolerance. Overall, our study further suggested the potential role of physiological differences in mediating interactions between climate change and biological invasion.

7.
Front Microbiol ; 14: 1134935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065132

RESUMEN

Archaeal viruses are one of the most mysterious parts of the virosphere because of their diverse morphologies and unique genome contents. The crenarchaeal viruses are commonly found in high temperature and acidic hot springs, and the number of identified crenarchaeal viruses is being rapidly increased in recent two decades. Over fifty viruses infecting the members of the order Sulfolobales have been identified, most of which are from hot springs distributed in the United States, Russia, Iceland, Japan, and Italy. To further expand the reservoir of viruses infecting strains of Sulfolobaceae, we investigated virus diversity through cultivation-dependent approaches in hot springs in Tengchong, Yunnan, China. Eight different virus-like particles were detected in enrichment cultures, among which five new archaeal viruses were isolated and characterized. We showed that these viruses can infect acidophilic hyperthermophiles belonging to three different genera of the family Sulfolobaceae, namely, Saccharolobus, Sulfolobus, and Metallosphaera. We also compared the lipid compositions of the viral and cellular membranes and found that the lipid composition of some viral envelopes was very different from that of the host membrane. Collectively, our results showed that the Tengchong hot springs harbor highly diverse viruses, providing excellent models for archaeal virus-host studies.

8.
Front Microbiol ; 14: 1114574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756353

RESUMEN

Gene transfer in crenarchaea has been observed within natural and experimental populations of Sulfolobus. However, the molecular factors that govern how gene transfer and recombination manifest themselves in these populations is still unknown. In this study, we examine a plasmid-mediated mechanism of gene transfer in S. islandicus that results in localized high frequency recombination within the chromosome. Through chromosomal marker exchange assays with defined donors and recipients, we find that while bidirectional exchange occurs among all cells, those possessing the integrated conjugative plasmid, pM164, mobilize a nearby locus at a significantly higher frequency when compared to a more distal marker. We establish that traG is essential for this phenotype and that high frequency recombination can be replicated in transconjugants after plasmid transfer. Mapping recombinants through genomic analysis, we establish the distribution of recombinant tracts with decreasing frequency at increasing distance from pM164. We suggest the bias in transfer is a result of an Hfr (high frequency recombination)-like conjugation mechanism in this strain. In addition, we find recombinants containing distal non-selected recombination events, potentially mediated by a different host-encoded marker exchange (ME) mechanism.

9.
Environ Microbiol ; 25(2): 575-587, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495168

RESUMEN

Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are unique archaeal membrane-spanning lipids with 0-8 cyclopentane rings on the biphytanyl chains. The cyclization pattern of GDGTs is affected by many environmental factors, such as temperature and pH, but the underlying molecular mechanism remains elusive. Here, we find that the expression regulation of GDGT ring synthase genes grsA and grsB in thermophilic archaeon Sulfolobus acidocaldarius is temperature- and pH-dependent. Moreover, the presence of functional GrsA protein, or more likely its products cyclic GDGTs rather than the accumulation of GrsA protein itself, is required to induce grsB expression, resulting in temporal regulation of grsA and grsB expression. Our findings establish a molecular model of GDGT cyclization regulated by environment factors in a thermophilic ecosystem, which could be also relevant to that in mesophilic marine archaea. Our study will help better understand the biological basis for GDGT-based paleoclimate proxies. Archaea inhabit a wide range of terrestrial and marine environments. In response to environment fluctuations, archaea modulate their unique membrane GDGTs lipid composition with different strategies, in particular GDGTs cyclization significantly alters membrane permeability. However, the regulation details of archaeal GDGTs cyclization in response to different environmental factor changes remain unknown. We demonstrated, for the first time, thermophilic archaea orchestrate the temporal expression of GDGT ring synthases, leading to delicate control of GDGTs cyclization to respond environmental temperature and acidity stress. Our study provides insight into the regulation of archaea membrane plasticity, and the survival strategy of archaea in fluctuating environments.


Asunto(s)
Archaea , Ecosistema , Archaea/metabolismo , Temperatura , Glicerol/metabolismo , Lípidos de la Membrana/metabolismo
10.
J Hematol Oncol ; 15(1): 147, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253861

RESUMEN

Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through "synthetic lethality" mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato/farmacología , Adenosina Difosfato/uso terapéutico , Ciclo Celular , Puntos de Control del Ciclo Celular , Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Ribosa/farmacología , Ribosa/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo
11.
Methods Mol Biol ; 2522: 145-162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36125748

RESUMEN

Homologous recombination-based gene targeting is a powerful and classic reverse genetics approach to precisely elucidate in vivo gene functions in the organisms across all three domains of life. Gene function studies in Archaea, particularly for those flourishing in inhospitable natural environments that are anaerobic, usually hot, and acidic, have been a great challenge; however, this situation was recently overturned with the increasing availability of genetic manipulation systems in several cultivable archaeal species. In the present chapter, we describe a detailed procedure to rapidly generate gene disruption mutants in the hyperthermophilic crenarchaeon Sulfolobus islandicus via a recently developed Microhomology-Mediated Gene Inactivation (MMGI) approach. We highlight crucial experimental details required to be carefully considered when using the MMGI approach for genetic manipulations. We hope this highly reproducible procedure can supplement existing genetic tools for studying the biology of archaeal order Sulfolobales.


Asunto(s)
Sulfolobus , Archaea/genética , Silenciador del Gen , Marcación de Gen , Técnicas Genéticas , Sulfolobus/genética
12.
Methods Mol Biol ; 2522: 163-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36125749

RESUMEN

Transposon insertion mutagenesis is a forward genetic approach that has been widely utilized for genetic characterization of bacteria and single-celled eukaryotes, and its applications are being rapidly expanded into a few archaeal model organisms for gene function analysis. Previously, we developed a Tn5-based in vivo transposon insertion mutagenesis system in the hyperthermophilic crenarchaeon S. islandicucs M.16.4 and defined the essential gene set under laboratory growth conditions. In this chapter, we will mainly focus on presenting details regarding the generation of a near-saturating transposon insertion mutant library in this crenarchaeal model. We envision that the traditional transposon-based forward mutagenesis screening paired with next generation sequencing will greatly speed up the exploration of archaeal genomic features.


Asunto(s)
Sulfolobus , Elementos Transponibles de ADN/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Mutagénesis Insercional , Sulfolobus/genética
13.
Curr Res Microb Sci ; 3: 100141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909627

RESUMEN

Extremophiles are group of microorganisms that possess ability to tolerate and live under the extremes of physico-chemical, geological and nutritional conditions. Such microorganisms are evolutionary relics and have evolved adaptation strategies at cellular, biochemical and molecular levels. They produce enzymes that are capable to maintain stability and function under the multitudes of extremities. These organisms also produce variety of other molecules and metabolites, such as extremolytes and surface-active compounds to protect against extremes of salinity, pH, pressure, temperatures and solar radiation. Investigations on these microorganisms can further open new avenues and opportunity for research and biotechnological applications in the areas of waste water treatment, bio-plastics, biofuel, cosmetics, agriculture, food and pharmaceuticals. Further, extremophiles have potential roles to play in bioremediation, astrobiology and biorefinery.

14.
Cell Host Microbe ; 30(7): 930-943.e6, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35594868

RESUMEN

Argonaute (Ago) proteins are widespread nucleic-acid-guided enzymes that recognize targets through complementary base pairing. Although, in eukaryotes, Agos are involved in RNA silencing, the functions of prokaryotic Agos (pAgos) remain largely unknown. In particular, a clade of truncated and catalytically inactive pAgos (short pAgos) lacks characterization. Here, we reveal that a short pAgo protein in the archaeon Sulfolobus islandicus, together with its two genetically associated proteins, Aga1 and Aga2, provide robust antiviral protection via abortive infection. Aga2 is a toxic transmembrane effector that binds anionic phospholipids via a basic pocket, resulting in membrane depolarization and cell killing. Ago and Aga1 form a stable complex that exhibits nucleic-acid-directed nucleic-acid-recognition ability and directly interacts with Aga2, pointing to an immune sensing mechanism. Together, our results highlight the cooperation between pAgos and their widespread associated proteins, suggesting an uncharted diversity of pAgo-derived immune systems.


Asunto(s)
Antivirales , Células Procariotas , Antivirales/metabolismo , Proteínas Argonautas/metabolismo , Eucariontes , Células Procariotas/metabolismo , Interferencia de ARN
15.
Food Chem ; 384: 132517, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35228002

RESUMEN

Tibetan tea is not only a national product of geographical identity, but also a traditional beverage inherits Chinese tradition. This study evaluated the metabolic profiles and biological activity in four Tibetan teas. 83 non-volatile metabolites were identified as differentially expressed metabolites, including amino acids and their derivatives, phenolic acids, flavonoids, nucleotides and their derivatives, terpenes, alkaloids, organic acids, lipids and others. CC and 131 were rich in terpenoids and lipids. MZ contained the highest contents of amino acids and their derivatives, phenolic acids and flavonoids. 26 key volatile compounds were considered as odor-active compounds. MZ showed the highest level of antioxidant and hypoglycemic activity. Statistics analysis indicated that polyphenols, flavonoids and catechins were significantly correlated (|r| ≥ 0.7, P < 0.05) with biological activities. This study indicated significant differences in the metabolic profiles of various types of Tibetan tea, which provided a clear database for quality detection of Tibetan tea.


Asunto(s)
Camellia sinensis , Aminoácidos , Camellia sinensis/química , Flavonoides/análisis , Lípidos , Fenoles/análisis , Té/química , Terpenos/análisis , Tibet
16.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200476, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34839697

RESUMEN

Virus-host interactions evolve along a symbiosis continuum from antagonism to mutualism. Long-term associations between virus and host, such as those in chronic infection, will select for traits that drive the interaction towards mutualism, especially when susceptible hosts are rare in the population. Virus-host mutualism has been demonstrated in thermophilic archaeal populations where Sulfolobus spindle-shaped viruses (SSVs) provide a competitive advantage to their host Sulfolobus islandicus by producing a toxin that kills uninfected strains. Here, we determine the genetic basis of this killing phenotype by identifying highly transcribed genes in cells that are chronically infected with a diversity of SSVs. We demonstrate that these genes alone confer growth inhibition by being expressed in uninfected cells via a Sulfolobus expression plasmid. Challenge of chronically infected strains with vector-expressed toxins revealed a nested network of cross-toxicity among divergent SSVs, with both broad and specific toxin efficacies. This suggests that competition between viruses and/or their hosts could maintain toxin diversity. We propose that competitive interactions among chronic viruses to promote their host fitness form the basis of virus-host mutualism. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Asunto(s)
Sulfolobus , Virus , Archaea , Interacciones Microbiota-Huesped , Sulfolobus/genética , Simbiosis
17.
Front Cardiovasc Med ; 8: 626878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708804

RESUMEN

Human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (HuMSC-EVs) can repair damaged tissues. The expression profile of circular RNAs (circRNAs) provides valuable insights into the regulation of the repair process and the exploration of the repair mechanism. AC16 cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) injury and subsequently cultured with or without HuMSC-EVs (Group T and Group C, respectively). High-throughput RNA sequencing was implemented for the two groups. On the basis of the transcriptome data, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and network analyses were carried out to determine the differential gene expression profiles between the two groups. After screening the circRNA database, the results were proved by quantitative real-time polymerase chain reaction. The survival rate of cardiomyocytes exposed to H/R was increased by treatment with HuMSC-EVs. RNA-seq analysis showed that 66 circRNAs were differentially expressed in cardiomyocytes in the co-cultured group. The cellular responses to hypoxia and to decreased oxygen levels were at the top of the GO upregulated list for the two groups, while the vascular endothelial growth factor signaling pathway, long-term potentiation, and the glucagon signaling pathway were at the top of the KEGG pathway upregulated list for the two groups. In the same samples, the 10 most aberrantly upregulated circRNAs were chosen for further verification of their RNA sequences. Seven of the 10 most aberrant circRNAs were significantly upregulated in the co-cultured group and in the HuMSC-EVs. Our results revealed that upregulated circRNAs were abundant during the repair of damaged cardiomyocytes by HuMSC-EVs, which provides a new perspective for the repair of H/R by HuMSC-EVs.

18.
Cell Transplant ; 29: 963689720945677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32864999

RESUMEN

Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of many diseases, including myocardial ischemia/reperfusion injury. We hypothesized that human umbilical cord mesenchymal stromal cells derived extracellular vesicles (HuMSC-EVs) could protect cardiac cells against hyperactive ER stress induced by hypoxia/reoxygenation (H/R) injury. The H/R model was generated using the H9c2 cultured cardiac cell line. HuMSC-EVs were extracted using a commercially available exosome isolation reagent. Levels of apoptosis-related signaling molecules and the degree of ER stress were assessed by western blot. The role of the PI3K/Akt pathway was investigated using signaling inhibitors. Lactate dehydrogenase leakage and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) analysis were used for evaluating the therapeutic effects of HuMSC-EVs in vitro. The results showed that ER stress and the rate of apoptosis were increased in the context of H/R injury. Treatment with HuMSC-EVs inhibited ER stress and increased survival in H9c2 cells exposed to H/R. Mechanistically, the PI3K/Akt pathway was activated by treatment with HuMSC-EVs after H/R. Inhibition of the PI3K/Akt pathway by a specific inhibitor, LY294002, partially reduced the protective effect of HuMSC-EVs. Our findings suggest that HuMSC-EVs could alleviate ER stress-induced apoptosis during H/R via activation of the PI3K/Akt pathway.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Estrés del Retículo Endoplásmico/fisiología , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipoxia de la Célula/fisiología , Humanos
19.
Front Microbiol ; 11: 896, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528426

RESUMEN

Microbiota in the pit mud (PM) plays a crucial role in the production of Chinese strong-flavor liquor (CSFL), the most popular distilled liquor in China. However, previous studies used total microbes, instead of viable ones, for the characterization of the microbial community in this environment. In this study, we used propidium monoazide (PMA) combined with quantitative polymerase chain reaction (qPCR) and 16S rRNA gene sequencing to verify the effect of non-viablee bacteria on the characterization of PM bacteria. After PMA concentration optimization, 50 µM PMA was chosen to pretreat 5 and 20 years PMs. The qPCR results showed that there were 50.78 and 71.84% of non-viable bacteria in the 5-year PM and 20-year PM, respectively. Both copy numbers of total bacteria and viable bacteria were significantly higher in 20-year PM than those in 5-year PM. Nevertheless, in terms of bacterial diversity and composition analyses at the operational taxonomic unit (OTU), phylum, class, and genus levels, 16S rRNA gene sequencing results displayed no significant differences between total bacteria and viable bacteria in both PM types. In conclusion, it is necessary for non-viable bacteria to be considered in determining absolute biomass of bacteria in PM, but not necessary in the analysis of diversity and composition of PM bacteria. To the best of our knowledge, our study is the first attempt to analyze viable bacteria in the PM of CSFL and provides useful information on how to accurately characterize a microbial community in a PM environment.

20.
mBio ; 11(2)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345641

RESUMEN

Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity.IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair.


Asunto(s)
Archaea/virología , Bacteriófagos , Sistemas CRISPR-Cas/inmunología , Interacciones Microbiota-Huesped , Sulfolobus , Evolución Biológica , Evolución Molecular , Genoma Viral , Sulfolobus/genética , Sulfolobus/virología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA