Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39087536

RESUMEN

A new computational framework for spinor-based relativistic exact two-component (X2C) calculations is developed using contracted basis sets with a spin-orbit contraction scheme. Generally contracted, j-adapted basis sets of p-block elements using primitive functions in the correlation-consistent basis sets are constructed for the X2C Hamiltonian with atomic mean-field spin-orbit integrals (the X2CAMF scheme). The contraction coefficients are taken from atomic X2CAMF Hartree-Fock spinors, thereby following the simple concept of a linear combination of atomic orbitals. Benchmark calculations of spin-orbit splittings, equilibrium bond lengths, and harmonic vibrational frequencies demonstrate the accuracy and efficacy of the j-adapted spin-orbit contraction scheme.

2.
Eur Heart J Case Rep ; 8(7): ytae349, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071536

RESUMEN

Background: Cardiac blunt trauma clinically presents as a spectrum of injuries of varying severity. However, the diagnosis of complications of remote myocardial trauma is often challenging, especially if the patient forgets to mention a remote history of chest trauma. Case summary: In this study, we present a patient who recently experienced traumatic myocardial dissection and interventricular septal rupture, alongside three patients exhibiting a mimic double-chambered left ventricle, indicative of prior remote myocardial trauma potentially associated with myocardial dissecting tear. Discussion: Patients with recent severe myocardial injury are detectable through cardiac imaging. However, forgotten remote myocardial trauma can lead to adverse myocardial remodelling, heart failure, and arrhythmias. Long-term myocardial remodelling can obscure initial myocardial imaging characteristics, posing challenges in interpretation. Our case series suggests that remote myocardial trauma may be more prevalent than commonly thought of in clinical practice.

3.
Int J Biol Macromol ; 277(Pt 1): 134090, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053832

RESUMEN

Enzymatic browning and microbial contamination of food threaten food sensory and safety. With the development of green and healthy concepts, there is a greater need for efficient, low-carbon antioxidant and antimicrobial strategies. In this study, we designed a nano-enzyme with antioxidant activities and biocompatibility. By mimicking the active center of the natural SOD enzyme, copper (Cu) and ovalbumin (OVA) were self-assembled to form Cu-nano-polymerised sheet (Cu-NPS), in which OVA as a scaffold carries cofactors to create the active sites, making the nanoenzymes compatible with the antioxidant activity and antimicrobial properties of Cu, and at the same time possessing good stability and biocompatibility. These properties enable Cu-NPS to have a broader application range, for removing reactive oxygen species (ROS) and broad-spectrum sterilization. Subsequently, Cu-NPS was doped into carrageenan (Carr) to form a nanocomposite film, effectively inhibiting enzymatic browning and microbial contamination. In this work, protein-based mimetic enzymes as artificial nanoenzymes have advantages over natural enzymes, and the Cu-NPS with simple synthesis, high stability, and diverse properties, provides new ideas for the design of functional materials.

4.
Curr Probl Cardiol ; 49(10): 102759, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067720

RESUMEN

OBJECTIVE: No study has systematically investigated the quality of long-term care delivered to the rural older people with chronic diseases, such as atrial fibrillation (AF) in China. This study aims to provide contemporary data on the prevalence and awareness of AF among the older population in rural China and to evaluate healthcare knowledge and delivery by village doctors. DESIGN: A cross-sectional study. SETTING: Rural villages in Daqiao and Xiaoji towns of Jiangsu Province, China. PARTICIPANTS: Rural population aged ≥65 years. OUTCOME MEASURES: AF was identified using 12-lead electrocardiography in the first-step (government-led health examination) and single-lead electrocardiography in the second-step (in-house AF screening). Questionnaire surveys were designed for the AF patients and their village doctors. RESULTS: Among 31,342 permanent residents, 12,630 (40.3 %) declined, 7,956 (25.3 %) participated in the first-step and 10,756 (34.3 %) in the second-step. The overall AF detection rate was 4.3 % (810/18,712). Of the 810 AF patients (mean age 76.1±5.9 years; 51.4 % female), 51.5 % were illiterate, only 2.6 % could use smartphone applications, and 8.1 % lived with their children. Common risk factors were older age, men, hypertension, diabetes, prior stroke, vascular disease, and congestive heart failure. Among the 402 patients with known AF, 367 were at high risk of stroke and 10.9 % (40/367) were anticoagulated. Only 17.6 % patients with known hypertension had blood pressure level <140/90 mmHg, and 6.0 % with known diabetes had a fasting blood glucose level ≤6.1 mmol/L. Only 7.3 % (9/122) village doctors reported having the knowledge of integrated care AF management. CONCLUSIONS: This study identified AF in 4.3 %, but AF management was suboptimal in rural China. The current village doctor-dominant rural healthcare system is far from delivering standardized AF management for older patients in rural China. There is an urgent need to empower the village doctors in optimising the care of AF patients.

5.
J Phys Chem A ; 128(31): 6540-6554, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39047199

RESUMEN

Relativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector. Notably, these tools enable straightforward "black-box" calculations. Two competing chemical mechanisms that contribute to the NSM are analyzed, illuminating the physics of ligand effects on NSM sensitivity factors.

6.
Cardiology ; : 1-8, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39053440

RESUMEN

INTRODUCTION: Atrial fibrillation (AF) is a common arrhythmia, with radiofrequency catheter ablation (RFCA) being first-line therapy. However, the high rate of post-ablation recurrence necessitates the identification of predictors for recurrence risk. Left atrial low-voltage areas (LA-LVASs), reflecting atrial fibrosis, have been confirmed to be related to recurrence of AF. Recently, epicardial adipose tissue (EAT) has been studied due to its role in initiating and maintaining AF. In this study, we try to evaluate the significance of the combined use of left atrial epicardial adipose tissue (LA-EAT) and percentage of LA-LVAs (LA-LVAs%) for predicting the recurrence of AF. METHODS: A total of 387 patients with AF who had undergone RFCA for the first time were followed up for 1, 3, 6, and 12 months. They were divided into two groups: the recurrence group (n = 90) and the non-recurrence group (n = 297). Before the ablation, all patients underwent computed tomography angiography examination of the left atrium, and the LA-EAT was measured using medical software (Advantage Workstation 4.6, GE, USA). After circumferential pulmonary vein isolation, a three-dimensional mapping system was used to map the LA endocardium and evaluate the LA-LVAs in sinus rhythm. RESULTS: After a median follow-up of 10.2 months, 90 patients developed AF recurrence after RFCA. Compared to patients without recurrence, the volume of LA-EAT (33.45 ± 13.65 vs. 26.27 ± 11.38; p < 0.001) and the LA-LVAs% (1.60% [0%, 9.99%] vs. 0.00% [0%, 2.46%]; p < 0.001) was significantly higher. Multivariate analysis indicated that PersAF, LA-EAT volume, and LA-LVAs% were independent predictors. Compared to PersAF (AUC 0.628; specificity 0.646; sensitivity 0.609), LA-EAT volume (AUC 0.655; specificity 0.675; sensitivity 0.586), or LA-LVAs% (AUC 0.659; specificity 0.836; sensitivity 0.437), the combined use of LA-EAT volume and LA-LVAs% offers higher accuracy for predicting AF recurrence after ablation (AUC 0.738; specificity 0.761; sensitivity 0.621). CONCLUSION: The combined LA-EAT and LA-LVAs% can effectively predict the risk of AF recurrence after radiofrequency ablation.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38884697

RESUMEN

BACKGROUND: Myocardial strain can analyze early myocardial dysfunction after myocardial infarction (MI). However, the correlation between left ventricular (LV) strain (including regional and global strain) obtained by cardiac magnetic resonance (CMR) imaging and left ventricular thrombus (LVT) after ST-segment elevation myocardial infarction (STEMI) is unclear. METHODS: The retrospective clinical observation study included patients with LVT (n = 20) and non-LVT (n = 195) who underwent CMR within two weeks after STEMI. CMR images were analyzed using CVI 42 (Circle Cardiovascular Imaging, Canada) to obtain LV strain values. Logistic regression analysis identified risk factors for LVT among baseline characteristics, CMR ventricular strain, and left ventricular ejection fraction (LVEF). Considering potential correlations between strains, the ability of LV strain to identify LVT was evaluated using 9 distinct models. Receiver operating characteristic curves were generated with GraphPad Prism, and the area under the curve (AUC) of LVEF, apical longitudinal strain (LS), and circumferential strain (CS) was calculated to determine their capacity to distinguish LVT. RESULTS: Among 215 patients, 9.3% developed LVT, with a 14.5% incidence in those with anterior MI. Univariate regression indicated associations of LAD infarct-related artery, lower NT-proBNP, lower LVEF, and reduced global, midventricular, and apical strain with LVT. Further multivariable regression analysis showed that apical LS, LVEF and NT-proBNP were still independently related to LVT (Apical LS: OR = 1.14, 95%CI (1.01, 1.30), P = 0.042; LVEF: OR = 0.91, 95%CI (0.85, 0.97), P = 0.005; NT-proBNP: OR = 2.35, 95%CI (1.04, 5.31) ). CONCLUSION: Reduced apical LS on CMR is independently associated with LVT after STEMI.

8.
Phytomedicine ; 130: 155711, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38749074

RESUMEN

BACKGROUND: Lignin has attracted a lot of attention because it is non-toxic, renewable and biodegradable. Lignin nanoparticles (LNPs) have high specific surface area and specific surface charges. It provides LNPs with good antibacterial and antioxidant properties. LNPs preparation has become clear, however, the application remains in the early stages. PURPOSE: A review centric research has been conducted, reviewing existing literature to accomplish a basic understanding of the medical applications of LNPs. METHODS: Initially, we extensively counseled the heterogeneity of lignin from various sources. The size and morphology of LNPs from different preparation process were then discussed. Subsequently, we focused on the potential medical applications of LNPs, including drug delivery, wound healing, tissue engineering, and antibacterial agents. Lastly, we explained the significance of LNPs in terms of antibacterial, antioxidant and biocompatibility, especially highlighting the need for an integrated framework to understand a diverse range of medical applications of LNPs. RESULTS: We outlined the chemical structure of different type of lignin, and highlighted the advanced methods for lignin nanoparticles preparation. Moreover, we provided an in-depth review of the potential applications of lignin nanoparticles in various medical fields, especially in drug carriers, wound dressings, tissue engineering components, and antimicrobial agents. CONCLUSION: This review provides a detailed overview on the current state and progression of lignin nanoparticles for medical applications.


Asunto(s)
Antibacterianos , Antioxidantes , Lignina , Nanopartículas , Lignina/química , Lignina/farmacología , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Humanos , Cicatrización de Heridas/efectos de los fármacos , Ingeniería de Tejidos/métodos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Vendajes
9.
J Agric Food Chem ; 72(12): 6250-6264, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38491001

RESUMEN

Hydroxytyrosol (HT; 3,4-dihydroxyphenyl ethanol) is an important functional polyphenol in olive oil. Our study sought to evaluate the protective effects and underlying mechanisms of HT on obesity-induced cognitive impairment. A high-fat and high-fructose-diet-induced obese mice model was treated with HT for 14 weeks. The results show that HT improved the learning and memory abilities and enhanced the expressions of brain-derived neurotrophic factors (BDNFs) and postsynaptic density proteins, protecting neuronal and synaptic functions in obese mice. Transcriptomic results further confirmed that HT improved cognitive impairment by regulating gene expression in neural system development and synaptic function-related pathways. Moreover, HT treatment alleviated neuroinflammation in the brain of obese mice. To sum up, our results indicated that HT can alleviate obesity-induced cognitive dysfunction by enhancing BDNF expression and alleviating neuroinflammation in the brain, which also means that HT may become a potentially useful nutritional supplement to alleviate obesity-induced cognitive decline.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Alcohol Feniletílico/análogos & derivados , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones Obesos , Enfermedades Neuroinflamatorias , Obesidad/metabolismo , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa
10.
BMC Cardiovasc Disord ; 24(1): 178, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521897

RESUMEN

AIMS: The current management of patients with atrial fibrillation (AF) and concomitant heart failure (HF) remains a significant challenge. Catheter ablation (CA) has been shown to improve left ventricular ejection fraction (LVEF) in these patients, but which patients can benefit from CA is still poorly understood. The aim of our study was to determine the predictors of improved ejection fraction in patients with persistent atrial fibrillation (PeAF) complicated with HF undergoing CA. METHODS AND RESULTS: A total of 435 patients with persistent AF underwent an initial CA between January 2019 and March 2023 in our hospital. We investigated consecutive patients with left ventricular systolic dysfunction (LVEF < 50%) measured by transthoracic echocardiography (TTE) within one month before CA. According to the LVEF changes at 6 months, these patients were divided into an improved group (fulfilling the '2021 Universal Definition of HF' criteria for LVEF recovery) and a nonimproved group. Eighty patients were analyzed, and the improvement group consisted of 60 patients (75.0%). In the univariate analysis, left ventricular end-diastolic diameter (P = 0.005) and low voltage zones in the left atrium (P = 0.043) were associated with improvement of LVEF. A receiver operating characteristic analysis determined that the suitable cutoff value for left ventricular end-diastolic diameter (LVDd) was 59 mm (sensitivity: 85.0%, specificity: 55.0%, area under curve: 0.709). A multivariate analysis showed that LVDd (OR = 0.85; 95% CI: 0.76-0.95, P = 0.005) and low voltage zones (LVZs) (OR = 0.26; 95% CI: 0.07-0.96, P = 0.043) were significantly independently associated with the improvement of LVEF. Additionally, parameters were significantly improved regarding the left atrial diameter, LVDd and ventricular rate after radiofrequency catheter ablation (all p < 0.05). CONCLUSIONS: The improvement of left ventricular ejection fraction (LVEF) occurred in 75.0% of patients. Our study provides additional evidence that LVDd < 59 mm and no low voltage zones in the left atrium can be used to jointly predict the improvement of LVEF after atrial fibrillation ablation.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Fibrilación Atrial/complicaciones , Función Ventricular Izquierda , Volumen Sistólico , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/complicaciones , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/complicaciones , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Resultado del Tratamiento
11.
Adv Healthc Mater ; 13(13): e2303016, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38431929

RESUMEN

Curcumin, a natural bioactive polyphenol with diverse molecular targets, is well known for its anti-oxidation and anti-inflammatory potential. However, curcumin exhibits low solubility (<1 µg mL-1), poor tissue-targeting ability, and rapid oxidative degradation, resulting in poor bioavailability and stability for inflammatory therapy. Here, poly(diselenide-oxalate-curcumin) nanoparticle (SeOC-NP) with dual-reactive oxygen species (ROS) sensitive chemical moieties (diselenide and peroxalate ester bonds) is fabricated by a one-step synthetic strategy. The results confirmed that dual-ROS sensitive chemical moieties endowed SeOC-NP with the ability of targeted delivery of curcumin and significantly suppress oxidative degradation of curcumin for high-efficiency inflammatory therapy. In detail, the degradation amount of curcumin for SeOC is about 4-fold lower than that of free curcumin in an oxidative microenvironment. As a result, SeOC-NP significantly enhanced the antioxidant activity and anti-inflammatory efficacy of curcumin in vitro analysis by scavenging intracellular ROS and suppressing the secretion of nitric oxide and pro-inflammatory cytokines. In mouse colitis models, orally administered SeOC-NP can remarkably alleviate the symptoms of IBD and maintain the homeostasis of gut microbiota. This work provided a simple and effective strategy to fabricate ROS-responsive micellar and enhance the oxidation stability of medicine for precise therapeutic inflammation.


Asunto(s)
Colitis , Curcumina , Nanopartículas , Especies Reactivas de Oxígeno , Curcumina/química , Curcumina/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Células RAW 264.7 , Oxidación-Reducción , Antioxidantes/química , Antioxidantes/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Masculino
12.
J Chem Theory Comput ; 20(2): 787-798, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38198515

RESUMEN

A Cholesky decomposition (CD)-based implementation of relativistic two-component coupled-cluster (CC) and equation-of-motion CC (EOM-CC) methods using an exact two-component Hamiltonian augmented with atomic-mean-field spin-orbit integrals (the X2CAMF scheme) is reported. The present CD-based implementation of X2CAMF-CC and EOM-CC methods employs atomic-orbital-based algorithms to avoid the construction of two-electron integrals and intermediates involving three and four virtual indices. Our CD-based implementation extends the applicability of X2CAMF-CC and EOM-CC methods to medium-sized molecules with the possibility to correlate around 1000 spinors. Benchmark calculations for uranium-containing small molecules were performed to assess the dependence of the CC results on the Cholesky threshold. A Cholesky threshold of 10-4 is shown to be sufficient to maintain chemical accuracy. Example calculations to illustrate the capability of the CD-based relativistic CC methods are reported for the bond-dissociation energy of the uranium hexafluoride molecule, UF6, with up to quadruple-ζ basis sets, and the lowest excitation energy in the solvated uranyl ion [UO22+(H2O)12].

13.
Environ Sci Process Impacts ; 26(2): 288-297, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38258502

RESUMEN

Alkaline media widely exist in natural and engineered systems such as semiarid/arid areas, radioactive waste sites, and mine tailings. In these settings, the commonly occurring iron (oxyhydr)oxides differed in their ability to influence the fate of nutrients and contaminants. Due to the substantially increased atmospheric carbon dioxide (CO2) concentration, carbonate stands to increase in these media. However, how increasing carbonate affects the transformation of poorly crystalline iron (oxyhydr)oxides (e.g., two-line ferrihydrite) under alkaline conditions still remains unclear. Here, kinetics of ferrihydrite transformation were evaluated at pH ∼10 as a function of [carbonate] = 0-286 mM using synchrotron-based X-ray and vibrational spectroscopic techniques. The results showed that carbonate slowed down ferrihydrite transformation slightly and suppressed goethite formation, but promoted hematite formation regardless of its concentration. At low carbonate concentration (11.42 mM), the effect of carbonate on product formation was obvious due to the weak inner-sphere complex; however, at high carbonate concentration (80-286 mM), the effect was retarded because of the adsorption equilibrium of carbonate as well as the initial carbonate adsorption followed by desorption. Moreover, carbonate modified the morphology of hematite from rhombic to ellipsoidal to honeycomb and goethite from rod-like to needle-like to spindle-like due to the inner-sphere adsorption-desorption of carbonate and adsorption of hydroxyl ions on reactive sites of iron (oxyhydr)oxides in alkaline media. The results suggest that the concurrently increasing carbonate with enhanced atmospheric CO2 could control the transformation and occurrence of iron (oxyhydr)oxides in natural and engineered environments and have important implications for the biogeochemical cycles of iron and carbon.


Asunto(s)
Dióxido de Carbono , Compuestos Férricos , Compuestos de Hierro , Compuestos Férricos/química , Minerales/química , Hierro/química , Óxidos , Carbonatos , Adsorción , Oxidación-Reducción
14.
Sci Total Environ ; 912: 168890, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016565

RESUMEN

Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.


Asunto(s)
Sulfuro de Hidrógeno , Nanopartículas del Metal , Humanos , Ecosistema , Sedimentos Geológicos/microbiología , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Metano , Sulfatos , Sulfuros , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
15.
Int J Biol Macromol ; 257(Pt 2): 128745, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101673

RESUMEN

The commercial graphene for Li ion batteries (LIBs) has high cost and low capacity. Therefore, it is necessary to develop a novel carbon anode. The cellulose nanowires (CNWs), which has advantages of low cost, high carbon content, is thought as a good carbon precursor. However, direct carbonization of CNWs leads to low surface area and less mesopores due to its easy aggregation. Herein, the metal-organic frameworks (MOFs) have been explored as templates to prepare porous carbon due to their 3D open pore structures. The porous carbon was developed with the coordination effect of CNWs and MOFs. The precursor of MOFs coordinates with the -OH and - COOH groups in the CNWs to provide stable structure. And the MOFs was grown in situ on CNWs to reduce aggregation and provide higher porosity. The results show that the porous carbon has high specific capacity and fast Li+/electronic conductivity. As anode for LIBs, it displays 698 mAh g-1 and the capacity retention is 85 % after 200 cycles. When using in the full-battery system, it exhibits energy density of 480 Wh kg-1, suggesting good application value. This work provides a low-cost method to synthesize porous carbon with fast Li+/electronic conductivity for high-performance LIBs.


Asunto(s)
Carbono , Estructuras Metalorgánicas , Porosidad , Iones , Celulosa , Electrodos , Litio
16.
J Nanobiotechnology ; 21(1): 483, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104180

RESUMEN

Salmonellosis is a globally extensive food-borne disease, which threatens public health and results in huge economic losses in the world annually. The rising prevalence of antibiotic resistance in Salmonella poses a significant global concern, emphasizing an imperative to identify novel therapeutic agents or methodologies to effectively combat this predicament. In this study, self-assembly hydrogen sulfide (H2S)-responsive nanoprodrugs were fabricated with poly(α-lipoic acid)-polyethylene glycol grafted rhein and geraniol (PPRG), self-assembled into core-shell nanoparticles via electrostatic, hydrophilic and hydrophobic interactions, with hydrophilic exterior and hydrophobic interior. The rhein and geraniol are released from self-assembly nanoprodrugs PPRG in response to Salmonella infection, which is known to produce hydrogen sulfide (H2S). PPRG demonstrated stronger antibacterial activity against Salmonella compared with rhein or geraniol alone in vitro and in vivo. Additionally, PPRG was also able to suppress the inflammation and modulate gut microbiota homeostasis. In conclusion, the as-prepared self-assembly nanoprodrug sheds new light on the design of natural product active ingredients and provides new ideas for exploring targeted therapies for specific Enteropathogens. Graphical  illustration for construction of self-assembly nanoprodrugs PPRG and its antibacterial and anti-inflammatory activities on experimental Salmonella infection in mice.


Asunto(s)
Sulfuro de Hidrógeno , Infecciones por Salmonella , Animales , Ratones , Salmonella typhimurium , Sulfuro de Hidrógeno/química , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/microbiología , Antibacterianos/farmacología
17.
J Chem Phys ; 159(24)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153147

RESUMEN

A first implementation of analytic gradients for spinor-based relativistic equation-of-motion coupled-cluster singles and doubles method using an exact two-component Hamiltonian augmented with atomic mean-field spin-orbit integrals is reported. To demonstrate its applicability, we present calculations of equilibrium structures and harmonic vibrational frequencies for the electronic ground and excited states of the radium mono-amide molecule (RaNH2) and the radium mono-methoxide molecule (RaOCH3). Spin-orbit coupling is shown to quench Jahn-Teller effects in the first excited state of RaOCH3, resulting in a C3v equilibrium structure. The calculations also show that the radium atoms in these molecules serve as efficient optical cycling centers.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38103153

RESUMEN

BACKGROUND: The objective of this study is to establish and validate a nomogram model for predicting the probability of silent cerebral infarction following ablation of atrial fibrillation. METHODS AND RESULTS: A retrospective observational study was conducted on the data of 238 patients with atrial fibrillation who underwent radiofrequency ablation in our hospital from October 2019 to December 2022. LASSO regression and multivariate logistics regression analysis were used to assess the independent risk factors for silent cerebral infarction after ablation. The AUC of the predictive model was 0.733 (95% CI, 0.649-0.816) and the internal validation (bootstrap = 1000) of the bootstrap method was 0.733 (95% CI 0.646-0.813). The Hosmer-Lemeshow test yields an insignificant p-value of X-squared = 10.212 and p-value = 0.2504, thus indicating an insignificant difference between predicted and observed values and good calibration results. The clinical impact curve (CIC) and clinical decision curve also prove that this graph is useful in the clinical setting. CONCLUSION: We developed an easy-to-use nomogram model to predict the probability of silent cerebral infarction following radiofrequency ablation of atrial fibrillation. This model can provide a valid assessment of the probability of postoperative silent cerebral infarction in patients undergoing radiofrequency ablation of atrial fibrillation.

19.
Phys Chem Chem Phys ; 25(47): 32613-32621, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38009218

RESUMEN

A relativistic coupled-cluster study of the low-lying electronic states in the radium monohydroxide molecule (RaOH), a radioactive polyatomic molecule of interest to laser cooling and to the search of new physics beyond the Standard Model, is reported. The level positions of the A2Π1/2 and C2Σ states have been computed with an accuracy of around 200 cm-1 to facilitate spectroscopic observation of RaOH using laser induced fluorescence spectroscopy, thereby exploiting the systematic convergence of electron-correlation and basis-set effects in relativistic coupled-cluster calculations. The energy level for the B2Δ3/2 state has also been calculated accurately to conclude that the B2Δ3/2 state lies above the A2Π1/2 state. This confirms X2Σ â†” A2Π1/2 as a promising optical cycling transition for laser cooling RaOH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA