Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Biol Macromol ; 273(Pt 1): 133074, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866293

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.

2.
Biomater Sci ; 12(5): 1332-1334, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38362932

RESUMEN

Correction for 'MiR-4458-loaded gelatin nanospheres target COL11A1 for DDR2/SRC signaling pathway inactivation to suppress the progression of estrogen receptor-positive breast cancer' by Jie Liu et al., Biomater. Sci., 2022, 10, 4596-4611, https://doi.org/10.1039/D2BM00543C.

3.
Prog Biophys Mol Biol ; 185: 1-16, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37793504

RESUMEN

The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.


Asunto(s)
Neoplasias de la Mama , Mecanotransducción Celular , Humanos , Femenino , Mecanotransducción Celular/fisiología , Canales Iónicos/metabolismo , Transducción de Señal , Fenómenos Biomecánicos , Microambiente Tumoral
4.
Life Sci ; 332: 122084, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716504

RESUMEN

Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.

5.
Biomater Sci ; 10(16): 4596-4611, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35792605

RESUMEN

RNA interference is a promising way to treat cancer and the construction of a stable drug delivery system is critically important for its application. Gelatin nanospheres (GNs) comprise a biodegradable drug vehicle with excellent biocompatibility, but there are limited studies on its delivery and role in the stabilization of miRNA and siRNA. Breast cancer is the most diagnosed type of female cancer worldwide. Abnormal miRNA expression is closely related to the occurrence and progression of estrogen receptor-positive (ER+) breast cancer. In this study, miR-4458 was upregulated in ER+ breast cancer and could inhibit MCF-7 cell viability, colony formation, migration, and invasion. Collagen type XI alpha 1 (COL11A1) was identified as a directly interacting protein of miR-4458 and an important component of the extracellular matrix. High COL11A1 expression was positively correlated with poor prognosis, lower overall survival, disease-free survival, and a late tumor-node-metastasis stage. COL11A1 knockdown could inhibit MCF-7 cell migration and invasion. GNs were used to load a miR-4458 mimic or COL11A1 siRNA (si-COL11A1) to achieve sustained and controlled release in xenograft nude mice. Their tumor volume was decreased, tumor cell apoptosis was promoted, and hepatic metastasis was significantly inhibited. Moreover, the DDR2/SRC signaling pathway was inactivated after transfection with the miR-4458 mimic and si-COL11A1. In conclusion, GNs can be potentially used to deliver siRNA or miRNA, and miR-4458 and COL11A1 can be possible targets for ER+ breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Receptor con Dominio Discoidina 2 , MicroARNs , Nanosferas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Colágeno Tipo XI/genética , Colágeno Tipo XI/metabolismo , Receptor con Dominio Discoidina 2/genética , Receptor con Dominio Discoidina 2/metabolismo , Femenino , Gelatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , MicroARNs/metabolismo , ARN Interferente Pequeño/uso terapéutico , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/uso terapéutico , Transducción de Señal , Familia-src Quinasas
6.
Mol Carcinog ; 60(8): 538-555, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062009

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Some microRNAs (miRNAs) were abnormally expressed in TNBC, and they are closely related to the occurrence and progression of TNBC. Here, we found that miR-506 was significantly downregulated in TNBC and relatively lower miR-506 expression predicted a poorer prognosis. Moreover, we found that miR-506 could inhibit MDA-MB-231 cell viability, colony formation, migration, and invasion, and suppress the ERK/Fos oncogenic signaling pathway through upregulating its direct target protein proenkephalin (PENK). Therefore, miR-506 was proposed as a nucleic acid drug for TNBC therapy. However, miRNA is unstable in vivo, which limiting its application as a therapeutic drug via conventional oral or injected therapies. Here, a gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA. Exogenous miR-506 mimic was loaded on GNs and injected into the in situ TNBC animal model, and the miR-506 could achieve sustained and controlled release. The results confirmed that overexpression of miR-506 and PENK in vivo through loading on GNs inhibited in situ triple-negative breast tumor growth and metastasis significantly in the xenograft model. Moreover, we indicated that the ERK/Fos signaling pathway was intensively inactivated after overexpression of miR-506 and PENK both in vitro and in vivo, which was further validated by the ERK1/2-specific inhibitor SCH772984. In conclusion, this study demonstrates that miR-506-loaded GNs have great potential in anti-TNBC aggressiveness therapy.


Asunto(s)
Encefalinas/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Precursores de Proteínas/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Gelatina , Técnicas de Transferencia de Gen , Humanos , Ratones , MicroARNs/administración & dosificación , Nanosferas , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Pharm ; 18(8): 2959-2973, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34189919

RESUMEN

Muscle atrophy usually occurs under mechanical unloading, which increases the risk of injury to reduce the functionality of the moving system, while there is still no effective therapy until now. It was found that miR-194 was significantly downregulated in a muscle atrophy model, and its target protein was the myocyte enhancer factor 2C (MEF2C). miR-194 could promote muscle differentiation and also inhibit ubiquitin ligases, thus miR-194 could be used as a nucleic acid drug to treat muscle atrophy, whereas miRNA was unstable in vivo, limiting its application as a therapeutic drug. A gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA here. Exogenous miR-194 was loaded in GNs and injected into the muscle atrophy model. It demonstrated that the muscle fiber cross-sectional area, in situ muscle contractile properties, and myogenic markers were increased significantly after treatment. It proposed miR-194 loaded in GNs as an effective treatment for muscle atrophy by promoting muscle differentiation and inhibiting ubiquitin ligase activity. Moreover, the developed miRNA delivery system, taking advantage of its tunable composition, degradation rate, and capacity to load various drug molecules with high dosage, is considered a promising platform to achieve precise treatment of muscle atrophy-related diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Gelatina/química , MicroARNs/administración & dosificación , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Nanosferas/química , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratas , Ratas Sprague-Dawley , Células Satélite del Músculo Esquelético/metabolismo , Resultado del Tratamiento
8.
Protein Pept Lett ; 28(9): 972-982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33858308

RESUMEN

Membrane proteins are crucial for biological processes, and many of them are important to drug targets. Understanding the three-dimensional structures of membrane proteins are essential to evaluate their bio-function and drug design. High-purity membrane proteins are important for structural determination. Membrane proteins have low yields and are difficult to purify because they tend to aggregate. We summarized membrane protein expression systems, vectors, tags, and detergents, which have deposited in the Protein Data Bank (PDB) in recent four-and-a-half years. Escherichia coli is the most expression system for membrane proteins, and HEK293 cells are the most commonly cell lines for human membrane protein expression. The most frequently vectors are pFastBac1 for alpha-helical membrane proteins, pET28a for beta-barrel membrane proteins, and pTRC99a for monotopic membrane proteins. The most used tag for membrane proteins is the 6×His-tag. FLAG commonly used for alpha-helical membrane proteins, Strep and GST for beta- barrel and monotopic membrane proteins, respectively. The detergents and their concentrations used for alpha-helical, beta-barrel, and monotopic membrane proteins are different, and DDM is commonly used for membrane protein purification. It can guide the expression and purification of membrane proteins, thus contributing to their structure and bio function studying.


Asunto(s)
Bases de Datos de Proteínas , Escherichia coli , Expresión Génica , Proteínas de la Membrana , Proteínas Recombinantes de Fusión , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
9.
Appl Microbiol Biotechnol ; 105(7): 2759-2773, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33683398

RESUMEN

The self-assembly of biomacromolecules is an extremely important process. It is potentially useful in the fields of life science and materials science. To carry out the study on the self-assembly of proteins, it is necessary to find out the suitable self-assembly conditions, which have always been a challenging task in practice. Inspired by the screening technique in the field of protein crystallization, we proposed using the same screening technique for seeking suitable protein self-assembly conditions. Based on this consideration, we selected 5 proteins (ß-lactoglobulin, hemoglobin, pepsin, lysozyme, α-chymotrypsinogen (II) A) together with 5 screening kits (IndexTM, BML, Morpheus, JCSG, PEG/Ion ScreenTM) to investigate the performance of these crystallization screening techniques in order to discover new optimized conditions of protein self-assembly. The screens were all kept at 293 K for certain days, and were analyzed using optical microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, fluorescence microscope, and atomic absorption spectroscope. The results demonstrated that the method of protein crystallization screening can be successfully applied in the screening of self-assembly conditions. This method is fast, high throughput, and easily implemented in an automated system, with a low protein consumption feature. These results suggested that such strategy can be applied to finding new conditions or forms in routine research of protein self-assembly. KEY POINTS: • Protein crystallization screening method is successfully applied in the screening of self-assembly conditions. • This screening method can be applied on various kinds of proteins and possess a feature of low protein consumption. • This screening method is fast, high throughput, and easily implemented in an automated system.


Asunto(s)
Proteínas , Cristalización
10.
Life Sci ; 272: 119238, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33600860

RESUMEN

Non-coding RNAs (ncRNAs) include miRNA, lncRNA, and circRNA. NcRNAs are involved in multiple biological processes, including chromatin remodeling, signal transduction, post-transcriptional modification, cell autophagy, carbohydrate metabolism, and cell cycle regulation. Triple negative breast cancer (TNBC) is notorious for high invasiveness and metastasis, poor prognosis, and high mortality, and it is the most malignant breast cancer, while the effective targets for TNBC treatment are still lacking. NcRNAs act as oncogenes or suppressor genes, as well as promote or inhibit the occurrence and development of TNBC. Here, we reviewed some important miRNAs, lncRNAs, circRNAs, their target(s) and molecular mechanisms in TNBC. It is benefited to understand the occurrence and development of TNBC, further some ncRNAs might be potential targets for TNBC treatment.


Asunto(s)
ARN no Traducido/genética , ARN no Traducido/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , Pronóstico , ARN Circular/genética , ARN Largo no Codificante/genética , Transcriptoma/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
11.
Mater Sci Eng C Mater Biol Appl ; 117: 111295, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919656

RESUMEN

Zinc is a biodegradable metal, which exhibits more moderate biodegradability than magnesium and iron, so that it has great application potential in the field of biomedical materials. Alloying of zinc and iron may lead to producing a new type of implant material Zn-Fe alloy, which might be able to meet the requirements for a moderate degradation rate. However, due to the huge difference in the melting point between zinc and iron, the preparation of Zn-Fe alloy is quite challenging and hence rarely reported. In this study, we show that Zn-Fe alloys can be successfully prepared by electrodeposition technology. The microstructures, composition, degradation properties and biocompatibility of the Zn-Fe alloys were systematically studied. The results showed that the content of iron in the alloys ranged from 0 to 8 wt%, depending on the concentration of Fe ions and the current density. In the alloys, the major's phases were η, δ and Г1, and they were mainly affected by the ion concentration in the electrolyte. In the in vitro immersion tests, the Zn-Fe alloy ZF2-1 showed the highest immersion corrosion rate, while ZF3-1 showed the highest electrochemical corrosion rate. Moreover, we found that the corrosion rates of the alloys were significantly higher than that of the pure Fe. In the in vivo experiments, we confirmed that the Zn-Fe alloy possessed good biocompatibility. These results demonstrate that the electrodeposition technology is a good method to prepare Zn-Fe alloys, and the Zn-Fe alloys prepared by this method are potentially promising materials for biomedical applications.


Asunto(s)
Aleaciones , Galvanoplastia , Implantes Absorbibles , Materiales Biocompatibles , Corrosión , Magnesio , Ensayo de Materiales , Zinc
13.
Research (Wash D C) ; 2020: 2640834, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32043083

RESUMEN

The contact angle, as a vital measured parameter of wettability of material surface, has long been in dispute whether it is affected by gravity. Herein, we measured the advancing and receding contact angles on extremely low contact angle hysteresis surfaces under different gravities (1-8G) and found that both of them decrease with the increase of the gravity. The underlying mechanism is revealed to be the contact angle hysteresis and the deformation of the liquid-vapor interface away from the solid surface caused by gradient distribution of the hydrostatic pressure. The real contact angle is not affected by gravity and cannot measured by an optical method. The measured apparent contact angles are angles of inclination of the liquid-vapor interface away from the solid surface. Furthermore, a new equation is proposed based on the balance of forces acting on the three-phase contact region, which quantitatively reveals the relation of the apparent contact angle with the interfacial tensions and gravity. This finding can provide new horizons for solving the debate on whether gravity affects the contact angle and may be useful for the accurate measurement of the contact angle and the development of a new contact angle measurement system.

14.
J Cell Biochem ; 121(4): 2756-2769, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31693255

RESUMEN

Breast cancer (BC) and prostate cancer (PC) are the second most common malignant tumors in women and men in western countries, respectively. The risks of death are 14% for BC and 9% for PC. Abnormal estrogen and androgen levels are related to carcinogenesis of the breast and prostate. Estradiol stimulates cancer development in BC. The effect of estrogen on PC is concentration-dependent, and estrogen can regulate androgen production, further affecting PC. Estrogen can also increase the risk of androgen-induced PC. Androgen has dual effects on BC via different metabolic pathways, and the role of the androgen receptor (AR) in BC also depends on cell subtype and downstream target genes. Androgen and AR can stimulate both primary PC and castration-resistant PC. Understanding the mechanisms of the effects of estrogen and androgen on BC and PC may help us to improve curative BC and PC treatment strategies.


Asunto(s)
Andrógenos/metabolismo , Neoplasias de la Mama/metabolismo , Estrógenos/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Estradiol , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Fosforilación , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Riesgo , Transducción de Señal
15.
J Steroid Biochem Mol Biol ; 195: 105471, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31513846

RESUMEN

Breast cancer is a major cause of cancer-related death for women in western countries. 17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) play important roles in the last step of sex-hormone activation and the first step of sex-hormone inactivation. 17ß-HSD2 is responsible for oxidizing the sex hormones. We used microarray technology to analyze the effect of 17ß-HSD2 on the MCF-7 cell transcript profile after knocking down 17ß-HSD2. Five hundred forty-two genes were regulated 1.5-fold or higher after treatment with 17ß-HSD2 siRNA. Knocking down 17ß-HSD2 interrupted nucleosome assembly. Pathway-Act-Network analysis showed that the MAPK and apoptosis signaling pathways were most regulated. In the gene-gene interaction network analysis, UGT2B15, which is involved in hormone metabolism, was the most regulated core gene. FOS, GREB1, and CXCL12 were the most regulated genes, and CXCL12 was related to tumor migration. Following 17ß-HSD2 knock-down, the cell viability decreased to 75.9%. The S-phase percentage decreased by 19.4%, the Q2-phase percentage in cell apoptosis testing increased by 1.5 times, and cell migration decreased to 66.0%. These results were consistent with our gene chip analysis and indicated that 17ß-HSD2 plays both hormone-dependent and hormone-independent enzymatic roles. In-depth investigations of this enzyme on the genomic level will help clarify its related molecular mechanisms.


Asunto(s)
Neoplasias de la Mama/genética , Estradiol Deshidrogenasas/genética , Transcriptoma , Apoptosis , Ciclo Celular , Humanos , Células MCF-7 , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/genética
16.
Bioelectromagnetics ; 39(6): 428-440, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29873401

RESUMEN

Large gradient high magnetic field (LG-HMF) is a powerful tool to study the effects of altered gravity on organisms. In our study, a platform for the long-term culture of aquatic organisms was designed based on a special superconducting magnet with an LG-HMF, which can provide three apparent gravity levels (µ g, 1 g, and 2 g), along with a control condition on the ground. Planarians, Dugesia japonica, were head-amputated and cultured for 5 days in a platform for head reconstruction. After planarian head regeneration, all samples were taken out from the superconducting magnet for a behavioral test under geomagnetic field and normal gravity conditions. To analyze differences among the four groups, four aspects of the planarians were considered, including head regeneration rate, phototaxis response, locomotor velocity, and righting behavior. Data showed that there was no significant difference in the planarian head regeneration rate under simulated altered gravity. According to statistical analysis of the behavioral test, all of the groups had normal functioning of the phototaxis response, while the planarians that underwent head reconstruction under the microgravity environment had significantly slower locomotor velocity and spent more time in righting behavior. Furthermore, histological staining and immunohistochemistry results helped us reveal that the locomotor system of planarians was affected by the simulated microgravity environment. We further demonstrated that the circular muscle of the planarians was weakened (hematoxylin and eosin staining), and the epithelial cilia of the planarians were reduced (anti-acetylated tubulin staining) under the simulated microgravity environment. Bioelectromagnetics. 2018;39:428-440. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Campos Magnéticos , Planarias/fisiología , Regeneración , Animales , Organismos Acuáticos , Gravitación , Inmunohistoquímica , Movimiento , Fototaxis , Planarias/anatomía & histología , Factores de Tiempo
17.
Int J Biol Macromol ; 112: 841-851, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29425866

RESUMEN

Protein crystallization is sensitive to the environment, while audible sound, as a physical and environmental factor during the entire process, is always ignored. We have previously reported that protein crystallization can be affected by a computer-generated monotonous sound with fixed frequency and amplitude. However, real-world sounds are not so simple but are complicated by parameters (frequency, amplitude, timbre, etc.) that vary over time. In this work, from three sound categories (music, speech, and environmental sound), we selected 26 different sounds and evaluated their effects on protein crystallization. The correlation between the sound parameters and the crystallization success rate was studied mathematically. The results showed that the real-world sounds, similar to the artificial monotonous sounds, could not only affect protein crystallization, but also improve crystal quality. Crystallization was dependent not only on the frequency, amplitude, volume, irradiation time, and overall energy of the sounds but also on their spectral characteristics. Based on these results, we suggest that intentionally applying environmental sound may be a simple and useful tool to promote protein crystallization.


Asunto(s)
Proteínas/química , Sonido , Animales , Pollos , Cristalización , Reproducibilidad de los Resultados
18.
J Mol Graph Model ; 77: 25-32, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28822273

RESUMEN

It is important to design insecticides having both low drug resistance and less undesirable toxicity for desert locust control. Specific GPCRs of Schistocerca gregaria, especially ß-adrenergic-like octopamine receptor (SgOctßR), can be considered as its potential effective insecticide targets. However, either the unavailability of SgOctßR's structure or the inadequate capability of its sequence lead the development of insecticide for Schistocerca gregaria meets its plateau. To relax this difficulty, this paper develops a promising progressive structure simulation from SgOctßR's sequence, to its predicted structure of SgOctßR in vacuum, to its conformation as well as its complex with endogenous ligand octopamine in a solvent-membrane system. The combined approach of multiple sequence alignment, static structural characterization, and dynamic process of conformational change during binding octopamine reveal three important aspects. The first one is the characterization of SgOctßR's active pocket, including the attending secondary structure elements, its hydrophobic residues and nonpolar surface. The second one is the interaction with octopamine, especially the involved hydrogen bonds and an aromatic stacking of pi-pi interactions. The third one is the potential binding sites, including six highly conserved residues and one highly variable residue for locust insecticide design. This work is definitely helpful for the further structure-based drug design for efficient and eco-friendly insecticides, as well as site-directed mutagenesis biochemical research of SgOctßR.


Asunto(s)
Adrenérgicos/química , Insecticidas/química , Octopamina/química , Receptores de Amina Biogénica/química , Animales , Sitios de Unión , Resistencia a Medicamentos/genética , Saltamontes/química , Ligandos , Mutagénesis , Octopamina/genética , Receptores de Amina Biogénica/genética
19.
Prog Biophys Mol Biol ; 126: 22-30, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28163053

RESUMEN

Myocyte enhancer factor 2C (MEF2C) is a transcription factor of MADS box family involved in the early development of several human cells including muscle (i.e., skeletal, cardiac, and smooth), neural, chondroid, immune, and endothelial cells. Dysfunction of MEF2C leads to embryo hypoplasia, disorganized myofibers and perinatal lethality. The main role of MEF2C is its regulation of muscle development. It has been reported that MEF2C-knockout mice die on embryonic day 9.5 from unnatural development of cardiovascular. The effects of MEF2C are mediated by its directly-interacting proteins; therefore, the investigation of these interactions is critical in order to clarify MEF2C's biological function. In this study, we review twenty-five proteins that directly interact with MEF2C, including nineteen proteins related to muscle development, four proteins related to neural cell development, one protein related to chondroid cell development, four proteins related to immune cell development, and two proteins related to endothelial cell development. Among these proteins, the interaction of MEF2C with MRFs is important for differentiation of developing muscle cells. MEF2C interacts with Sox18 for endothelial vessel morphogenesis. The interaction of MEF2C with Cabin1 is important for maintaining T-cell inactivation. Investigating the interactions of MEF2C and its directly-interacting proteins is not only helpful to understand of the physiological function of MEF2C, but also provides a target for future rational drug design.


Asunto(s)
Factores de Transcripción MEF2/metabolismo , Animales , Condrocitos/metabolismo , Células Endoteliales/metabolismo , Humanos , Inmunidad , Factores de Transcripción MEF2/química , Neuronas/metabolismo , Unión Proteica
20.
Oncotarget ; 8(13): 22235-22250, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28118608

RESUMEN

RNA binding motif 3 (RBM3) is a highly conserved cold-induced RNA binding protein that is transcriptionally up-regulated in response to harsh stresses. Featured as RNA binding protein, RBM3 is involved in mRNA biogenesis as well as stimulating protein synthesis, promoting proliferation and exerting anti-apoptotic functions. Nowadays, accumulating immunohistochemically studies have suggested RBM3 function as a proto-oncogene that is associated with tumor progression and metastasis in various cancers. Moreover, emerging evidences have also indicated that RBM3 is equally effective in neuroprotection. In the present review, we provide an overview of current knowledge concerning the role of RBM3 in various cancers and neuroprotection. Additionally, its potential roles as a promising diagnostic marker for cancer and a possible therapeutic target for neuro-related diseases are discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores/metabolismo , Neoplasias/metabolismo , Neuroprotección/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Proto-Oncogenes Mas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA