Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Epigenetics ; 14(1): 178, 2022 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-36529814

RESUMEN

BACKGROUND: Breast cancer (BC) is the most frequently diagnosed cancer and a leading cause of death among women worldwide. Early BC is potentially curable, but the mortality rates still observed among BC patients demonstrate the urgent need of novel and more effective diagnostic and therapeutic options. Limitless self-renewal is a hallmark of cancer, governed by telomere maintenance. In around 95% of BC cases, this process is achieved by telomerase reactivation through upregulation of the human telomerase reverse transcriptase (hTERT). The hypermethylation of a specific region within the hTERT promoter, termed TERT hypermethylated oncological region (THOR) has been associated with increased hTERT expression in cancer. However, its biological role and clinical potential in BC have never been studied to the best of our knowledge. Therefore, we aimed to investigate the role of THOR as a biomarker and explore the functional impact of THOR methylation status in hTERT upregulation in BC. RESULTS: THOR methylation status in BC was assessed by pyrosequencing on discovery and validation cohorts. We found that THOR is significantly hypermethylated in malignant breast tissue when compared to benign tissue (40.23% vs. 12.81%, P < 0.0001), differentiating malignant tumor from normal tissue from the earliest stage of disease. Using a reporter assay, the addition of unmethylated THOR significantly reduced luciferase activity by an average 1.8-fold when compared to the hTERT core promoter alone (P < 0.01). To further investigate its biological impact on hTERT transcription, targeted THOR demethylation was performed using novel technology based on CRISPR-dCas9 system and significant THOR demethylation was achieved. Cells previously demethylated on THOR region did not develop a histologic cancer phenotype in in vivo assays. Additional studies are required to validate these observations and to unravel the causality between THOR hypermethylation and hTERT upregulation in BC. CONCLUSIONS: THOR hypermethylation is an important epigenetic mark in breast tumorigenesis, representing a promising biomarker and therapeutic target in BC. We revealed that THOR acts as a repressive regulatory element of hTERT and that its hypermethylation is a relevant mechanism for hTERT upregulation in BC.


Asunto(s)
Neoplasias de la Mama , Telomerasa , Humanos , Femenino , Telomerasa/genética , Telomerasa/metabolismo , Metilación de ADN , Neoplasias de la Mama/genética , Epigénesis Genética , Biomarcadores/metabolismo
2.
J Clin Invest ; 131(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34720085

RESUMEN

Aberrant activation of telomerase in human cancer is achieved by various alterations within the TERT promoter, including cancer-specific DNA hypermethylation of the TERT hypermethylated oncological region (THOR). However, the impact of allele-specific DNA methylation within the TERT promoter on gene transcription remains incompletely understood. Using allele-specific next-generation sequencing, we screened a large cohort of normal and tumor tissues (n = 652) from 10 cancer types and identified that differential allelic methylation (DAM) of THOR is restricted to cancerous tissue and commonly observed in major cancer types. THOR-DAM was more common in adult cancers, which develop through multiple stages over time, than in childhood brain tumors. Furthermore, THOR-DAM was especially enriched in tumors harboring the activating TERT promoter mutations (TPMs). Functional studies revealed that allele-specific gene expression of TERT requires hypomethylation of the core promoter, both in TPM and TERT WT cancers. However, the expressing allele with hypomethylated core TERT promoter universally exhibits hypermethylation of THOR, while the nonexpressing alleles are either hypermethylated or hypomethylated throughout the promoter. Together, our findings suggest a dual role for allele-specific DNA methylation within the TERT promoter in the regulation of TERT expression in cancer.


Asunto(s)
Metilación de ADN , ADN de Neoplasias/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Telomerasa/biosíntesis , ADN de Neoplasias/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Telomerasa/genética
4.
J Clin Invest ; 129(1): 223-229, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30358567

RESUMEN

Replicative immortality is a hallmark of cancer cells governed by telomere maintenance. Approximately 90% of human cancers maintain their telomeres by activating telomerase, driven by the transcriptional upregulation of telomerase reverse transcriptase (TERT). Although TERT promoter mutations (TPMs) are a major cancer-associated genetic mechanism of TERT upregulation, many cancers exhibit TERT upregulation without TPMs. In this study, we describe the TERT hypermethylated oncological region (THOR), a 433-bp genomic region encompassing 52 CpG sites located immediately upstream of the TERT core promoter, as a cancer-associated epigenetic mechanism of TERT upregulation. Unmethylated THOR repressed TERT promoter activity regardless of TPM status, and hypermethylation of THOR counteracted this repressive function. THOR methylation analysis in 1,352 human tumors revealed frequent (>45%) cancer-associated DNA hypermethylation in 9 of 11 (82%) tumor types screened. Additionally, THOR hypermethylation, either independently or along with TPMs, accounted for how approximately 90% of human cancers can aberrantly activate telomerase. Thus, we propose that THOR hypermethylation is a prevalent telomerase-activating mechanism in cancer that can act independently of or in conjunction with TPMs, further supporting the utility of THOR hypermethylation as a prognostic biomarker.


Asunto(s)
Metilación de ADN , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Regiones Promotoras Genéticas , Telomerasa/biosíntesis , Línea Celular Tumoral , Islas de CpG , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Humanos , Proteínas de Neoplasias/genética , Telomerasa/genética
5.
Acta Neuropathol Commun ; 2: 174, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539912

RESUMEN

TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, ß-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.


Asunto(s)
Neoplasias Cerebelosas/genética , Litio/farmacología , Meduloblastoma/genética , Mutación/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Adolescente , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/radioterapia , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Cooperación Internacional , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/patología , Meduloblastoma/radioterapia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/efectos de la radiación , Radioterapia/efectos adversos , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA