Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 322: 121342, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839847

RESUMEN

The fabrication of reusable natural polysaccharide sponges with nanoscale dispersed photocatalysts to achieve robust photocatalytic efficiency is desirable yet challenging. Herein, inspired by the nesting behavior when fishing, we designed reusable starch sponge with chemically anchored nano-ZnO into carboxylated starch matrix by thermoplastic interfacial reactions and solvent replacement for absorbing and photodegrading methylene blue (MB) in situ. The plasticization and interfacial reactions promoted a simultaneous increase in the reactivity of the starch hydroxyl/carboxyl groups and the specific surface area of ZnO. Meanwhile, the crosslinked networks of starch sponge could be adjusted by varying the ZnO and carboxylic groups contents. The results of photodegradation experiments revealed the recyclable closed-loop process of attraction-trapping-photodegradation of MB was successfully realized, achieving the effect of killing three birds with one stone. The reusable starch sponge with homogeneous dispersion of nano-ZnO by constructing three-dimensional porous channels possessed the high enrichment capacity and the remarkable photocatalysis efficiency with 150 mg/L ZnO. Under UV irradiation, the starch sponge degraded 97 % of MB with 1.67 × 10-3 min-1 photodegradation rate constant even after five cycles, which exceeded most existing photocatalytic systems. Overall, the reusable starch sponge with adjustable structure provided new insights for multifunctional bio-based photocatalyst loading systems.

2.
J Hazard Mater ; 454: 131469, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116331

RESUMEN

Tuning the electronic structure of single atom catalysts (SACs) is an effective strategy to promote the catalytic activity in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Herein, a series of Fe-based SACs with S1/2/3/4-coordination numbers on graphene were designed to regulate the electronic structural of SACs at molecular level, and their effects on PMS activation were investigated via density function theory (DFT). The calculation results demonstrate that the electron structure of the active center can be adjusted by coordination environment, which further affects the activation of PMS. Among the studied Fe-SX-C4-X catalysts, with the increase of the S coordination number, the electron density of the Fe-SX-C4-X active center was optimized. The active center of the Fe-S4-C0 catalyst has a largest positive charge density, exhibiting the highest number of electron transfer. It also has a lower kinetic energy barrier (0.28 eV) for PMS dissociation. Organic pollutant such as bisphenol A (BPA) can achieve stable adsorption on Fe-SX-C4-X catalysts, which is conducive to subsequent oxidation by radicals. The dual index ∆f(r) indicates that the para-carbon atom of the hydroxyl group on the benzene ring of BPA is vulnerable to radical attack. This study highlights a theoretical support and a certain guide for designing efficient SACs to activate PMS.

3.
Phys Chem Chem Phys ; 24(23): 14517-14524, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35665786

RESUMEN

Electrochemical reduction of nitrogen is considered a promising route for achieving green and sustainable ammonia synthesis under ambient conditions. A transition metal atom loaded on N-doped graphene is commonly used in the nitrogen reduction reaction (NRR), but the effect of the graphene's coordination environment on electron transfer has rarely been studied. Herein, the NRR performance of Fe1/2/3 clusters, anchored on single-vacancy and N-doped graphene, is investigated systematically via density functional theory (DFT). The calculation results show that the Fe2 cluster supported by two N atom-modified single-vacancy graphene displays the highest catalytic performance of NRR with the lowest energy barrier of 0.62 eV among the 12 candidates, and exhibits efficient selectivity. It has superior performance because of the highly asymmetrical distribution of electrons on graphene, the large positive charge of the Fe2, and the strong adsorption of *NNH. This study provides a new strategy to improve the NRR performance by regulating the Fe1/2/3 clusters coordination environment.

4.
J Hazard Mater ; 385: 121510, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31704120

RESUMEN

Graphene oxide (GO)-anisotropic noble metal hybrid systems were developed as highly sensitive and reproducible surface enhanced Raman scattering (SERS) platform, in which ultrathin GO was embedded between two metallic layers of flower-like Ag nanoparticles (AgNFs) and gold nanostars (AuNSts). Due to multi-dimensional plasmonic coupling effect, the well-designed AgNFs-GO-AuNSts sandwich structures possessed ultrahigh sensitivity with the detection limit of R6G as low as 1.0 × 10-13 M and high enhancement factor of 2.59 × 107. Additionally, the GO interlayer could function as protective shell to suppress the oxidation of bottom silver layer and efficiently position the target analytes within hot spots. These features endow the substrate with high stability and excellent reproducibility (Signal variations < 7%). Particularly, the GO sandwiched substrate can be explored for the direct capture and sensitive detection of polychlorinated biphenyls (PCBs) without any organic modifier as molecule harvester. This minimum detected concentration was estimated as low as 3.4 × 10-6 M. The detection method based on GO mediated sandwich substrate avoids complicated surface modification manipulations and improves the substrate cleanness. Moreover, the resultant sandwich substrates can be used to recognize fingerprint peaks of different PCBs in their complex mixture, revealing great potential applications in SERS-based simultaneous detection of multiple pollutants with low affinity.

5.
Org Lett ; 14(6): 1508-11, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22360793

RESUMEN

A series of mono- and bisadducts of thieno-o-quinodimethane with C(60) (TOQC) was efficiently prepared through the Diels-Alder reaction of pristine or solubilizing side-chain-substituted 2,3-bis(chloromethyl)thiophene with C(60). The pristine TOQC bisadduct (bis-TOQC) shows much higher performance than the side-chain-substituted TOQC bisadducts in polymer solar cells, while the situation is inverse for the TOQC monoadducts. The best power conversion efficiency of 5.1% was achieved from the bis-TOQC:P3HT solar cells under simulated AM1.5G irradiation (86 mW/cm(2)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA