Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Fish Dis ; : e13960, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708552

RESUMEN

In this issue, we established rapid, cost-effective, and simple detection methods including recombines polymerase amplification with lateral flow dipstick (RPA-LFD) and real-time RPA for cyprinid herpesvirus 3(CyHV-3), and evaluated their sensitivity, specificity, and applicability, the real-time RPA method could achieve sensitive diagnosis of CyHV-3 within 1.3 copies per reaction, respectively. The real-time RPA method is 10-fold more sensitive than RPA-LFD method. The exact number of CyHV-3 can be calculated in each sample by real-time RPA. The sera from koi also can be tested in these methods. In addition, no cross-reaction was observed with other related pathogens, including carp oedema virus (CEV), spring viraemia of carp virus (SVCV), cyprinid herpesvirus 1(CyHV-1), cyprinid herpesvirus 2(CyHV-2), type I grass carp reovirus (GCRV-I), type II GCRV (GCRV-II), type III GCRV (GCRV-III), and Aeromonas hydrophila.

2.
Microorganisms ; 12(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38543623

RESUMEN

Pathogenic Aeromonas spp. are the etiological agents of Motile Aeromonas Septicemia (MAS). This study aimed to identify the pathogen of diseased tadpoles (Quasipaa spinosa) and the antibiotic-resistance characteristics of this bacterium. A Gram-negative bacterium, named strain QST31, was isolated from the ascites of diseased tadpoles and was identified as Aeromonas media based on physiological and biochemical tests, as well as molecular identification. Artificial infection experiments showed that strain QST31 was highly virulent to tadpoles, with an LC50 of 2.56 × 107 CFU/mL. The antimicrobial susceptibility of strain QST31 was evaluated using the disk diffusion method, and the results indicated that strain QST31 was resistant to 28 antibacterial agents. In addition, the whole genome of strain QST31 was sequenced, and the presence of antimicrobial resistance genes, integron, and transposon was investigated. Genes involved in adherence, hemolysis, type II secretion system (T2SS), T6SS, iron uptake system, and quorum sensing were identified in the genome of strain QST31. More than 12 antimicrobial resistance genes were predicted in the genome of strain QST31. Interestingly, a novel Tn7709 transposon harboring sul1, aadA16, catB3, blaOXA-21, aac(6')-IIa, and tet(A) genes was identified. In conclusion, this is the first report on the isolation and identification of pathogenic A. media with multidrug resistance genes from diseased tadpoles. The results revealed that preventing and controlling aquatic animal diseases caused by multidrug resistance A. media will be a huge challenge in the future.

3.
Fish Shellfish Immunol ; 146: 109438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341116

RESUMEN

The global aquaculture industry of tilapia (Oreochromis niloticus) has been significantly impacted by the emergence of tilapia lake virus (TiLV). However, effective prevention and control measures are still not available due to a lack of unclear pathogenesis of TiLV. Our previous transcriptome found that coxsackievirus and adenovirus receptor (CAR) was in response to TiLV infection in tilapia. To explore the potential function of OnCAR, the effect of OnCAR on TiLV proliferation was analyzed in this study. The OnCAR open reading frame (ORF) sequence of tilapia was 516 bp in length that encoded 171 amino acids with an Ig-like domain and transmembrane region. The OnCAR gene showed widespread expression in all investigated tissues, with the highest levels in the heart. Moreover, the OnCAR gene in the liver and muscle of tilapia exhibited dynamic expression levels upon TiLV challenge. Subcellular localization analysis indicated that OnCAR protein was mainly localized on the membrane of tilapia brain (TiB) cells. Importantly, the gene transcripts, genome copy number, S8-encoded protein, cytopathic effect, and internalization of TiLV were obviously decreased in the TiB cells overexpressed with OnCAR, indicating that OnCAR could inhibit TiLV replication. Mechanically, OnCAR could interact with viral S8 and S10-encoded protein. To the best of our knowledge, OnCAR is the first potential anti-TiLV cellular surface molecular receptor discovered for inhibiting TiLV infection. This finding is beneficial for better understanding the antiviral mechanism of tilapia and lays a foundation for establishing effective prevention and control strategies against tilapia lake virus disease (TiLVD).


Asunto(s)
Enfermedades de los Peces , Infecciones por Orthomyxoviridae , Receptores Virales , Tilapia , Virus , Animales , Tilapia/genética
4.
Dev Comp Immunol ; 155: 105152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38408717

RESUMEN

Tilapia lake virus (TiLV) is an emerging virus that seriously threatens the tilapia industries worldwide. Interferon regulatory factors (IRFs), which are the crucial mediators regulating the response of interferon (IFN) to combat invading viruses, have not yet been reported in tilapia during TiLV infection. Here, six IRF (IRF1, IRF2, IRF4, IRF7, IRF8, and IRF9) homologs from tilapia were characterized and analyzed. These IRFs typically shared the conserved domains and phylogenetic relationship with IRF homologs of other species. Tissue distribution analysis showed that all six IRF genes were expressed in various tissues, with the highest expression in immune-related tissues. Furthermore, overexpression of IRFs in tilapia brain (TiB) cells significantly inhibited TiLV propagation, as evidenced by decreased viral segment 8 gene transcripts and copy numbers of viral segment 1. More importantly, all six IRF genes significantly enhanced the promoter activity of type I interferon-a3 (IFNa3) in TiB cells, suggesting that tilapia IRF genes serve as positive regulators in activating IFNa3. Surprisingly, the promoter activity of IFNa3 mediated by IRF genes was markedly inhibited post-TiLV infection, indicating that TiLV antagonized IRF-mediated IFN immune response. Taken together, six IRF genes of tilapia are highly conserved transcription factors that inhibit TiLV infection by activating the promoter of IFNa3, which is in turn restrained by TiLV. These findings broaden our knowledge about the functionality of IRF-mediated antiviral immunity in tilapia against TiLV infection and host-TiLV interaction, which lays a foundation for developing antiviral strategies in tilapia cultural industries.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Tilapia , Virosis , Virus , Animales , Interferones/metabolismo , Cíclidos/genética , Cíclidos/metabolismo , Filogenia , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Virus/metabolismo
5.
Fish Shellfish Immunol ; 146: 109401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266792

RESUMEN

The blood-brain barrier (BBB) is mainly composed of specialized endothelial cells, which can resist harmful substances, transport nutrients, and maintain the stability of the brain environment. In this study, an endothelial cell line from tilapia (Oreochromis niloticus) named TVEC-01 was successfully established. During the earlier establishment phase of the cell line, the TVEC-01 cells were persistently exposed to an astrocyte-conditioned medium (ACM). TVEC-01 cells were identified as an endothelial cell line. TVEC-01 cells retained the multiple functions of endothelial cells and were capable of performing various experiments in vitro. Furthermore, TVEC-01 cells efficiently expressed BBB-related tight junctions and key efflux transporters. From the results of the qRT-PCR, we found that the TVEC-01 cell line did not gradually lose BBB characteristics after persistent and repetitive passages, which was different from the vast majority of immortalized endothelial cells. The results showed that ACM induced up-regulation of the expression levels of multiple BBB-related genes in TVEC-01 cells. We confirmed that Streptococcus agalactiae was capable of invading the TVEC-01 cells and initiating a series of immune responses, which provided a theoretical basis for S. agalactiae to break through the BBB of teleost through the transcellular traversal pathway. In summary, we have successfully constructed an endothelial cell line of teleost, named TVEC-01, which can be used in many experiments in vitro and even for constructing BBB in vitro. Moreover, it was confirmed that S. agalactiae broke through the BBB of teleost through the transcellular traversal pathway and caused meningitis.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Animales , Barrera Hematoencefálica/metabolismo , Astrocitos/fisiología , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo
6.
Front Microbiol ; 13: 1036432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439833

RESUMEN

We previously developed and assessed the effectiveness of the attenuated Streptococcus agalactiae (Group B Streptococcus, GBS) strain WC1535 ∆Sia (with neuA-D gene cluster deletion) vaccine in tilapia (Oreochromis niloticus). In this study, we characterized the bacterial communities of the tilapia intestines by 16S rRNA high-throughput sequencing and assessed the serum antibody response, expression of immune-related genes, and histological changes following formalin-killed GBS vaccine (FKV) and the live attenuated vaccine ∆Sia (LAV). Results showed that FKV and LAV induced robust systemic and intestinal mucosal immune responses in tilapia without causing obvious pathological changes in the hindgut, spleen, and head kidney but exerted different effects on intestinal bacterial communities. The richness or diversity of the intestinal bacterial community of FKV tilapia showed no significant changes compared with that of the control fish (p > 0.05) at either day 21 post-initial vaccination (21 dpiv) or day 35 (day 14 after the second immunization) (35 dpiv). The community composition of FKV tilapia and controls was significantly similar, although the relative abundance of some genera was significantly altered. Relative to control fish, the gut ecosystem of LAV tilapia was significantly disturbed with a substantial increase in community diversity at 21 dpiv (p < 0.05) and a significant decrease at 35 dpiv in fish with high serum antibody response (ΔSia35H) (p < 0.05). However, there was no significant difference between ΔSia35H and ΔSia35L (low serum antibody response) fish (p > 0.05). Moreover, the community composition of LAV tilapia at 21 dpiv or 35 dpiv was considerably different from that of the controls. Particularly, GBS ∆Sia was found to be abundant in the intestine at 21 and 35 dpiv. This result suggested that the parenteral administration of the LAV (∆Sia) may also have the effect of oral vaccination in addition to the immune effect of injection vaccination. In addition, a significant correlation was found between the expression of immune-related genes and certain bacterial species in the intestinal mucosal flora. Our findings will contribute to a better understanding of the effects of inactivated and attenuated vaccines on gut microbiota and their relationship with the immune response.

7.
Foods ; 11(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36360014

RESUMEN

Trade is an important means to achieve the Sustainable Development Goals (SDGs) Target 2.1 "Zero Hunger", and comparative advantage can be used to explain the causes and performance of trade. This study measures the static distribution of agricultural trade comparative advantage in countries along the Belt and Road (B&R) and China by utilizing the Balassa revealed comparative advantage (RCA) index, and further calculates its dynamic change by utilizing the revealed symmetric comparative advantage (RSCA) index and the ordinary least squares correlation analysis. The results show that: (1) in the face of multiple unfavorable factors, the initial comparative advantage of most agricultural products at Harmonized System (HS) 2-digit level in countries along the B&R and China deteriorated, simultaneously, but the initial comparative disadvantage of most and some agricultural products at HS 2-digit level in countries along the B&R and China improved, respectively; (2) the present agricultural trade comparative advantage in most countries along the B&R was higher than China and had a larger extent of change, but the current product structure of their bilateral agricultural trade was in line with each other's comparative advantage, indirectly proving the validity of the Heckscher-Ohlin theorem. Our research findings suggest that the agricultural trade comparative advantage in countries along the B&R and China need to be further utilized to improve agricultural trade performance and better play its important role in ensuring global, regional, and national food security.

8.
J Appl Microbiol ; 133(4): 2403-2416, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35801502

RESUMEN

AIMS: This study aimed to develop a live attenuated vaccine as an effective approach to prevent streptococcosis in tilapia (Oreochromis niloticus). METHODS AND RESULTS: We eliminated the virulence factor, sialic acid (Sia) encoded by the neuA-D gene cluster from the Group B Streptococcus (Streptococcus agalactiae, GBS) strain WC1535, to construct Sia-deficient S. agalactiae (ΔSia) mutant by homologous recombination. Results showed that the ΔSia mutant had higher adherence to HEp-2 cells and lower resistance to RAW264.7 cell phagocytosis than the wild-type S. agalactiae. The virulence of the ΔSia mutant to tilapia dramatically decreased with no virulence recovery. The relative percent survivals (RPSs) were 50.00% and 54.50% at 30 days when challenged at the wild-type WC1535 doses of 1.0 × 107 and 5.0 × 107  CFU fish-1 , respectively, via intraperitoneal (IP) injection. The tilapia vaccinated via IP injection with the ΔSia mutant induced strong antibody agglutination titers. The expression of IL-1ß, TNF-α, MHC-Iα, and MHC-IIß could be enhanced in the intestine, spleen, and head kidney for tilapia administered with the ΔSia mutant. CONCLUSIONS: GBS Sia plays a critical role in adherence to HEp-2 cells and resistance to the immune clearance of RAW264.7 cells. Moreover, the ΔSia mutant is a safe, stable, and immunogenic live attenuated vaccine candidate to protect tilapia against GBS infection. SIGNIFICANCE AND IMPACT OF STUDY: The results offer more evidence of the importance of Sia in GBS and may be instructive in the control of tilapia streptococcosis.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Tilapia , Animales , Enfermedades de los Peces/prevención & control , Ácido N-Acetilneuramínico , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/genética , Factor de Necrosis Tumoral alfa , Vacunas Atenuadas , Factores de Virulencia/genética
9.
Front Immunol ; 13: 914010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634331

RESUMEN

Grass carp haemorrhagic disease caused by grass carp reovirus II is a serious disease of the aquaculture industry and vaccination is the only effective method of GCRV protection. In this study, Lactococcus lactis was used as oral vaccine delivery to express the GCRV II VP6 protein. We evaluated the protective efficacy of the live vaccine strain to induce mucosal immune protection. After oral administration, the recombinant strains remained in the hindgut for antigen presentation and increased the survival rate 46.7% and the relative percent survival 42.9%, respectively versus control vaccination. Though L. lactis alone can induce the inflammatory response by stimulating the mucosal immune system, the recombinant L. lactis expressing VP6 greatly enhanced nonspecific immune responses via expression of immune related genes of the fish. Furthermore, both systemic and mucosal immunity was elicited following oral immunization with the recombinant strain and this strain also elicited an inflammatory response and cellular immunity to enhance the protective effect. L. lactis can therefore be utilized as a mucosal immune vector to trigger high levels of immune protection in fish at both the systemic and mucosal levels. L. lactis is a promising candidate for oral vaccine delivery.


Asunto(s)
Carpas , Enfermedades de los Peces , Lactococcus lactis , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Vacunas , Animales , Anticuerpos Antivirales , Inmunidad Mucosa , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/veterinaria , Vacunas/metabolismo
10.
Foods ; 10(12)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34945563

RESUMEN

The problem of food insecurity has become increasingly critical across the world since 2015, which threatens the lives and livelihoods of people around the world and has historically been a challenge confined primarily to developing countries, to which the countries of Central Asia, as typical transition countries, cannot be immune either. Under this context, many countries including Central Asian countries have recognized the importance of trade openness to ensure adequate levels of food security and are increasingly reliant on international trade for food security. Using the 2001-2018 panel data of Central Asian countries, based on food security's four pillars (including availability, access, stability, and utilization), this study empirically estimates the impact of trade openness and other factors on food security and traces a U-shaped (or inverted U-shaped) relationship between trade openness and food security by adopting a panel data fixed effect model as the baseline model, and then conducts the robustness test by using the least-squares (LS) procedure for the pooled data and a dynamic panel data (DPD) analysis with the generalized method of moments (GMM) approach, simultaneously. The results show that: (1) a U-shaped relationship between trade openness and the four pillars of food security was found, which means that beyond a certain threshold of trade openness, food security status tends to improve in Central Asian countries; (2) gross domestic product (GDP) per capita, GDP growth, and agricultural productivity have contributed to the improvement of food security. Employment in agriculture, arable land, freshwater withdrawals in agriculture, population growth, natural disasters, and inflation rate have negative impacts on food security; and (3) this study confirms that trade policy reforms can finally be conducive to improving food security in Central Asian countries. However, considering the effects of other factors, potential negative effects of trade openness, and vulnerability of global food trade network, ensuring reasonable levels of food self-sufficiency is still very important for Central Asian countries to achieve food security. Our research findings can provide scientific support for sustainable food system strategies in Central Asian countries.

11.
Am J Transl Res ; 13(8): 9826-9830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540117

RESUMEN

OBJECTIVE: To evaluate the surgical technique and the efficacy of flow-through flap with a wrist epithelial branch of the ulnar artery to repair a finger soft tissue defect. METHODS: Between June 2015 and December 2017, 12 cases of soft tissue defects of fingers and injured digital artery were repaired by flow-through flap with wrist epithelial branch of the ulnar artery, including 7 males and 5 females (age range: 18-45 years old, average age: 23.6 years old). The causes of injury included electric saw injury in 7 cases, and machine crush injury in 5 cases. 5 cases were combined with tendon injury, 4 cases with fracture, 12 cases with vessel injury and 2 cases with nerve injury. The area range of the flap was 3.0 cm ×1.8 cm to 6.0 cm ×3.0 cm. The length of the pedicles of the flaps ranged from 2.3 cm to 4.7 cm, with an average length of 3.7 cm. The donor sites were sutured directly in 10 cases, and 2 cases were repaired with a full-thickness skin graft from the ilioinguinal region. Flow-through anastomoses of the distal and proximal end of the wrist epithelial branch of the ulnar artery to the distal and proximal end of the digital artery were created, so as to connect the vessels and reach the physiologic state of blood supply. RESULTS: All flaps and skin grafts survived after operation, and all wounds healed at I phase. All patients were followed up 6-12 months (mean: 9 months). The flaps exhibited smooth appearance and soft texture, similar to that of the normal surrounding skin. At last follow-up, the two-point distance of flaps was 9-15 mm (mean: 11 mm). According to the assessment of upper limb function issued by the Hand Surgery Society of Chinese Medical Association, the hand function was excellent in 10 cases, and good in 2 cases. The ulnar wrist donor areas only had linear scar. CONCLUSION: Flow-through flap with wrist epithelial branch of ulnar artery exhibits strength in a concealed donor site, reliable blood supply, and simple operation. Flow-through method can be used to repair a broken or defective digital artery in I stage. It is a good method to repair a soft tissue defect of fingers.

12.
Pathogens ; 10(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34451461

RESUMEN

Aeromonas schubertii is the etiological pathogen of internal organ nodules in snakehead fish. Infections with A. schubertii produce a significant economic loss in aquaculture. Therefore, it is important to examine the immune mechanisms by which snakeheads defend against A. schubertii infection. In this study, we established a hybrid snakehead infection model by intraperitoneal injection of A. schubertii that produced internal organ nodules. The splenic immune response of infected fish was examined at the transcriptome level by Illumina-seq analysis. Results showed 14,796 differentially expressed genes (DEGs) following A. schubertii infection, including 4441 up-regulated unigenes and 10,355 down-regulated unigenes. KEGG analysis showed 2084 DEGs to be involved in 192 pathways, 14 of which were immune-related. Twelve DEGs were used to validate quantitative real-time PCR results with RNA-seq data. Time-course expression analysis of six genes demonstrated modulation of the snakehead immune response by A. schubertii. Furthermore, transcriptome analysis identified a substantial number of DEGs that were involved in the apoptosis signaling pathway. TUNEL analysis of infected spleens confirmed the presence of apoptotic cells. This study provided new information for a further understanding of the pathogenesis of A. schubertii in snakeheads, which can be used to prevent and possibly treat A. schubertii infections.

13.
Appl Opt ; 59(24): 7186-7194, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32902481

RESUMEN

This paper reports the linear frequency-modulated thermography inspection of disbonds in titanium alloy honeycomb sandwich structures with different skin thicknesses. A three-dimensional finite element model of a titanium alloy honeycomb sandwich structure is built. The maximum value of the phase difference between the disbond defect region and the nondefective region is used to optimize the heating duration and frequency bandwidth. Three titanium alloy honeycomb sandwich structure specimens, with a skin thickness of 0.6 mm, 0.85 mm, and 1.2 mm, respectively, are manufactured, in which skin-to-core disbond defects are prepared. The linear frequency-modulated thermography experiments are carried out on the specimens. The correlation algorithm is used to process the infrared image sequences. The experimental results show that linear frequency-modulated thermography can realize the fast and efficient inspection of the disbonds in titanium alloy honeycomb sandwich structures with different skin thicknesses. For skin thickness ranges from 0.6 mm to 1.2 mm, a heating duration of 22 s and a frequency range of 0.01 Hz-0.21 Hz are recommended.

14.
Fish Shellfish Immunol ; 98: 853-859, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31751658

RESUMEN

Streptococcus agalactiae is an important pathogen associated with various aquatic animals, especially tilapia. Streptococcosis has greatly limited the healthy development of tilapia aquaculture in recent times. The development of novel effective vaccines is important for the prevention and control of streptococcosis in fish. We previously constructed a non-encapsulated S. agalactiae strain △cps by the in-frame deletion method. Here, we evaluated whether this mutant △cps is safe for tilapia and suitable for protection against streptococcosis. We observed that the △cps strain was non-pathogenic to tilapia, and there was no reversion of virulence when it was passaged in tilapia. Moreover, the △cps strain survived for at least 11 d in the main immune organs of tilapia. The tilapia vaccinated via intraperitoneal (IP) injection with △cps strain induced a high antibody titer, and the IgM antibody levels were significantly higher in the vaccinated group than in the control group. The vaccination protected tilapia against the S. agalactiae challenge with a relative percent survival of 90.47%. In addition, tilapia immunized with the △cps strain showed significantly higher expression level of IFN-γ, IL-1ß, MyD88, IgM, and MHC-Iα in the head kidney than those in the control during the entire observation period. The expression of MHC-IIß was inhibited during 1-7 d of immunization. These results revealed that the △cps strain is able to induce humoral and cell-mediated immune response in tilapia. Therefore, the strain △cps has a broad application prospect as a target for attenuation in vaccine development.


Asunto(s)
Cíclidos/inmunología , Enfermedades de los Peces/prevención & control , Inmunidad Celular , Inmunidad Humoral , Infecciones Estreptocócicas/veterinaria , Vacunas Estreptocócicas/inmunología , Streptococcus agalactiae/inmunología , Animales , Enfermedades de los Peces/inmunología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/administración & dosificación , Vacunación/veterinaria , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
15.
Appl Microbiol Biotechnol ; 103(21-22): 9023-9035, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31654082

RESUMEN

Streptococcus agalactiae is a major pathogen causing streptococcosis. To prevent and control this bacterial disease, antagonistic bacteria have become a new research hotspot. This study evaluated the probiotic potential of Bacillus velezensis LF01 strain, which is antagonistic to S. agalactiae. The active compounds produced by LF01 showed antimicrobial activity against a broad spectrum of fish pathogens, including S. agalactiae, Streptococcus iniae, Aeromonas hydrophila, Edwardsiella tarda, Edwardsiella ictaluri, Aeromonas schubertii, Aeromonas veronii, Aeromonas jandaei, and Vibrio harveyi. The antimicrobial compounds were heat stable, pH stable, UV stable, resistant to proteases, and could be stored for a long time. To evaluate the probiotic function of LF01 in Nile tilapia, juveniles were divided into three treatment groups: a control group, an interval feeding group, and a continuous feeding group. Tilapia fed with LF01-supplemented diets (1.0 × 109 CFU/g) showed significantly better growth performances than those of the control group (P < 0.05). Tilapia fed with LF01-supplemented diets significantly increased lysozyme (LZY) and superoxide dismutase (SOD) activities. The expression of three immune-related genes (C3, lyzc, and MHC-IIß) was higher in the intestine, head kidney, and gill of tilapia from the continuous feeding group than in those from the control group (P < 0.05). Tilapia fed with LF01-supplemented diets showed remarkably improved survival rates after S. agalactiae infection, and analysis of their intestinal tract pathogens revealed that the abundance of Edwardsiella and Plesiomonas had significantly decreased compared with the control group. Our findings demonstrate that LF01 is an effective antagonist against various fish pathogens and has potential for controlling infections by Streptococcus spp. and other pathogens in tilapia.


Asunto(s)
Antibiosis/fisiología , Bacillus/fisiología , Agentes de Control Biológico/farmacología , Cíclidos/microbiología , Infecciones Estreptocócicas/prevención & control , Streptococcus agalactiae/fisiología , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Secuenciación de Nucleótidos de Alto Rendimiento , Probióticos/farmacología , Infecciones Estreptocócicas/veterinaria
16.
J Microbiol Biotechnol ; 29(8): 1324-1334, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31370117

RESUMEN

Fish mycobacteriosis is a common bacterial disease in many species of freshwater and marine fish and has caused severe loss of fish production. Mycobacterium marinum has been the most prevalent pathogen observed in several outbreaks of mycobacteriosis of farmed sturgeons in China. However, the immune responses and pathology of sturgeons in mycobacterial infection are rarely studied. Therefore, we used the Illumina RNA-seq method to analyze the transcriptome profile of Acipenser schrenckii challenged with Mycobacterium marinum. To begin, 168,220 non-redundant contigs were acquired from the infection and control groups, and among these, 33,225 contigs have acquired annotations. A total of 4,043 differently expressed (DE) contigs between the two groups were identified, and among these, 2479 were upregulated and 1564 were down-regulated in the infected fish. A total of 1,340 DE contigs with acquired annotations in KEGG were enriched for 124 pathways including the TNF signaling pathway, and the Toll-like receptor signaling pathway. The roles of DE genes involved in significant pathways and other processes were discussed. The 2,209 DE contigs that have yet to acquire proper annotation may represent candidate genes associated with infection in sturgeons and are expected to serve as immunogenetic resources for further study. To our best knowledge, this is the first transcriptome study on sturgeons under bacterial infection.


Asunto(s)
Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Peces/genética , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/veterinaria , Transcriptoma , Animales , China , Regulación hacia Abajo , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Inmunidad , Anotación de Secuencia Molecular , Mycobacterium marinum/patogenicidad , Regulación hacia Arriba
17.
Fish Shellfish Immunol ; 94: 249-257, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31470139

RESUMEN

In recent years, streptococcal diseases have severely threatened the development of tilapia aquaculture, but effective prevention and control methods have not yet been established. To understand the immune responses of vaccinated Nile tilapia (Oreochromis niloticus), digital gene expression (DGE) technology was applied in this study to detect the gene expression profile of the Nile tilapia (O. niloticus) liver in response to ScpB (Streptococcal C5a peptidase from group B Streptococcus, ScpB) vaccination and a Streptococcus agalactiae-challenge. The control and the ScpB-vaccinated Nile tilapia yielded a total of 25,788,734 and 27,088,598 clean reads, respectively. A total of 1234 significant differentially expressed unigenes were detected (P < 0.05), of which 236 were significantly up-regulated, and 269 were significantly down-regulated (P < 0.05, |fold|>2, FDR<0.05). Of the differentially expressed gene, the identified genes which were enriched using databases of GO and KEGG could be categorized into a total of 67 functional groups and were mapped to 153 signaling pathways including 15 immune-related pathways. The differentially expressed genes (TLR1, TLR2, TLR3, TLR5, TLR9, MyD88, C3, IL-1ß, IL-10) were detected in the expression profiles, and this was subsequently verified via quantitative real-time PCR (qPCR). The results of this study can serve as a basis for future research not only on the molecular mechanism of S. agalactiae invasion, but also on the anti-S. agalactiae mechanism in targeted tissues of Nile tilapia.


Asunto(s)
Cíclidos/inmunología , Enfermedades de los Peces/genética , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/fisiología , Animales , Cíclidos/genética , Regulación hacia Abajo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Biblioteca de Genes , Ontología de Genes , Hígado/metabolismo , Hígado/microbiología , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Vacunas Estreptocócicas/administración & dosificación , Regulación hacia Arriba
18.
PLoS Negl Trop Dis ; 13(6): e0007421, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31246981

RESUMEN

BACKGROUND: In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease caused by the group B Streptococcus (GBS; Streptococcus agalactiae). Disease, predominantly septic arthritis and meningitis, was associated with sequence type (ST)283, acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in neonates and older adults with co-morbidities, this outbreak affected non-pregnant and younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283 had only been reported from twenty humans in Hong Kong and two in France, and from one fish in Thailand. We hypothesised that ST283 was causing region-wide infection in Southeast Asia. METHODOLOGY/PRINCIPAL FINDINGS: We performed a literature review, whole genome sequencing on 145 GBS isolates collected from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences including 227 variants of ST283 from humans and animals. Although almost absent outside Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13 (31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in 62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species in Singapore markets, and a diseased frog in China. CONCLUSIONS: GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283 is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is predominantly a foodborne disease. However, whether transmission is from aquaculture to humans, or vice versa, or involves an unidentified reservoir remains unknown. Creation of cross-border collaborations in human and animal health are needed to complete the epidemiological picture.


Asunto(s)
Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Genotipo , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Asia Sudoriental/epidemiología , Niño , Preescolar , Femenino , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Filogenia , Embarazo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/patogenicidad , Tilapia , Secuenciación Completa del Genoma , Adulto Joven
19.
Dis Aquat Organ ; 133(3): 253-261, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-31187732

RESUMEN

Genetic variation in the major histocompatibility complex (MHC) Class IIB was tested in Nile tilapia Oreochromis niloticus, and the association between the MHC IIB alleles and disease resistance was also studied. F3 fry offspring (n = 1200) from 12 full-sib families were challenged with Streptococcus agalactiae, which caused significantly different mortalities in different Nile tilapia families (11.00-81.10%). Twenty fry (F1) from each of the 12 families were selected to study the polymorphisms of the MHC Class IIB gene using PCR followed by cloning and sequencing methods. The results showed that the size of the amplified fragment was 770-797 bp. Thirty-seven sequences from 240 individuals revealed 22 different alleles, which belonged to 9 major allele types. Up to 63.58% of nucleotide positions were variable, while the proportion of the amino acid variable positions was up to 68.73%. According to the survival rate of offspring (F3) from 12 full-sib families, we deduced that the alleles Orni-DAB*0107, Orni-DAB*0201 and Orni-DAB*0302 were highly associated with resistance to S. agalactiae, while the allele Orni-DAB*0701 was associated with susceptibility to S. agalactiae. In addition, our previous study found that the allele Orni-DAB*0201 was more frequently distributed in the disease-resistant groups. Therefore, the allele Orni-DAB*0201 could be used as an S. agalactiae resistance-related MHC marker in molecular marker-assisted selective breeding programs for S. agalactiae-resistant Nile tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Antígenos de Histocompatibilidad Clase II , Polimorfismo Genético , Streptococcus agalactiae
20.
Fish Shellfish Immunol ; 86: 53-63, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30428393

RESUMEN

The administration of probiotics during early ontogenetic stages can be an effective way to manipulate the gut microbiota of animals. Specifically, the administration of probiotics can enhance gut-colonization success and regulate the immune response. In this study, the effects of early contact with probiotic Lactococcus lactis subsp. lactis JCM5805 on the gut microbial assembly of larvae Nile tilapia were examined. The effects of JCM5805 on IFNα expression through the TLR7 and TLR9-dependent signal transduction pathway as well as larval disease resistance were studied. Three days postfertilization, embryos were randomly allocated into nine 30 L tanks with a concentration of 20 eggs L-1. Triplicate tanks were performed for each treatment. Treatments included a control group (C), a low probiotic concentration group (T1), where JCM5805 was added to the water at 1 × 104 cfu ml-1, and a high probiotic concentration group (T2), where JCM5805 was added to the water at 1 × 108 cfu ml-1. Probiotics were administered continuously for 15 days. qPCR was used to analyze transcript levels of the TLR7, TLR9, MyD88, IRF7 and IFNα genes using RNA extracted from whole embryos on day 5 and 10, and from the intestine of larvae on day 15. Transcription of these genes was also measured in the intestine, liver and spleen of larvae one month after the cessation of probiotic administration. The results showed that MyD88 and IRF7 were significantly elevated on days 5 and 10 in the T2 group. TLR9 and IFNα were also significantly elevated on days 5, 10 and 15 during probiotic application of T2 (P < 0.05). One month after the cessation of probiotics administration, no significant difference was observed in the expression of these genes (P > 0.05). The larvae were fed probiotics for 15 days and were infused with Streptococcus agalactiae strain WC1535 at a final concentration of 1 × 106 cfu ml-1. The survival rate of T2 was significantly higher than that of the C group (P < 0.05). Microbial characterization by Illumina HiSeq sequencing of 16S rRNA gene amplicons showed the significantly higher presence of JCM5805 in the guts of T2 after 15 days of probiotic continuous application. Although JCM5805 was below the detection level after the cessation of probiotic for 5 days, the gut microbiota of the exposed tilapia larvae in T2 remained clearly different from that of the control treatment after the cessation of probiotic administration. These data indicated that a high concentration of the probiotic strain JCM5805 upregulated the expression of IFNα via the TLR7/TLR9-Myd88 pathway and enhanced disease resistance of larvae. JCM5805 was only transiently detected and thus was not included in the stable larval microbiota. The early microbial exposure of tilapia larvae affects the gut microbiota at later life stages. However, whether the upregulation of related genes is related to the presence of JCM5805 strain in the intestine requires further verification.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Lactococcus lactis/fisiología , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Animales , Regulación del Desarrollo de la Expresión Génica/inmunología , Probióticos , Distribución Aleatoria , Tilapia/inmunología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA