RESUMEN
Pulmonary fibrosis (PF) is a chronic progressive end-stage lung disease. However, the mechanisms underlying the progression of this disease remain elusive. Presently, clinically employed drugs are scarce for the treatment of PF. Hence, there is an urgent need for developing novel drugs to address such diseases. Our study found for the first time that a natural source of Prismatomeris connata Y. Z. Ruan (Huang Gen, HG) ethyl acetate extract (HG-2) had a significant anti-PF effect by inhibiting the expression of the transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-ß1/Smad) pathway. Network pharmacological analysis suggested that HG-2 had effects on tyrosine kinase phosphorylation, cellular response to reactive oxygen species, and extracellular matrix (ECM) disassembly. Moreover, mass spectrometry imaging (MSI) was used to visualize the heterogeneous distribution of endogenous metabolites in lung tissue and reveal the anti-PF metabolic mechanism of HG-2, which was related to arginine biosynthesis and alanine, asparate and glutamate metabolism, the downregulation of arachidonic acid metabolism, and the upregulation of glycerophospholipid metabolism. In conclusion, we elaborated on the relationship between metabolite distribution and the progression of PF, constructed the regulatory metabolic network of HG-2, and discovered the multi-target therapeutic effect of HG-2, which might be conducive to the development of new drugs for PF.
RESUMEN
The study was to evaluate the clinical outcomes of azvudine versus nirmatrelvir-ritonavir against omicron strains of coronavirus disease 2019 infections and determine their comparative effectiveness. This retrospective study included 716 patients who received nirmatrelvir-ritonavir (NR group) or azvudine (FNC group) at Peking Union Medical College Hospital between 1 November 2022 and 27 February 2023. Patients in the FNC group (n = 304) were younger, exhibited less severe symptoms, started antiviral therapy later, received corticosteroids more frequently, and used tocilizumab less frequently than patients in the NR group (n = 412). Within 28 d of therapy, 40 (9.7%) and 20 (6.6%) deaths were in the NR and FNC groups, respectively. No differences were observed between drugs and mortality rates (odds ratio [OR] 0.78, 95% CI 0.40-1.5, P = 0.45), clinical improvement (OR 0.79, 95% CI 0.79-1.3, P = 0.38), and clinical progression (OR 1.0, 95% CI 0.58-1.8, P = 0.96). More patients in the NR group experienced platelet decline than those in the FNC group (17.6% vs. 8.9%, P = 0.034). This study indicated that the effectiveness and safety of azvudine were comparable to those of nirmatrelvir-ritonavir.
Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Ritonavir , SARS-CoV-2 , Humanos , Ritonavir/uso terapéutico , Ritonavir/efectos adversos , Ritonavir/administración & dosificación , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , SARS-CoV-2/aislamiento & purificación , Antivirales/uso terapéutico , Antivirales/administración & dosificación , Antivirales/efectos adversos , Resultado del Tratamiento , Anciano , COVID-19/mortalidad , COVID-19/virologíaRESUMEN
Cisplatin is a widely used drug for the clinical treatment of tumors. However, nephrotoxicity limits its widespread use. A series of compounds including eight analogs (G3-G10) and 40 simplifiers (G11-G50) were synthesized based on the total synthesis of Psiguamer A and B, which were novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Among these compounds, (d)-G8 showed the strongest protective effect on cisplatin-induced acute kidney injury (AKI) in vitro and vivo, and slightly enhanced the antitumor efficacy of cisplatin. A mechanistic study showed that (d)-G8 promoted the efflux of cisplatin via upregulating the copper transporting efflux proteins ATP7A and ATP7B. It enhanced autophagy through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. (d)-G8 showed no acute toxicity or apparent pathological damage in the healthy mice at a single dose of 1 g/kg. This study provides a promising lead against cisplatin-induced AKI.
Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Cisplatino , Psidium , Cisplatino/farmacología , Animales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Ratones , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Psidium/química , Terpenos/farmacología , Terpenos/síntesis química , Terpenos/química , Masculino , Relación Estructura-ActividadRESUMEN
Oligodendrocyte precursor cells (OPCs) migrate extensively using blood vessels as physical scaffolds in the developing central nervous system. Although the association of OPCs with the vasculature is critical for migration, the regulatory mechanisms important for OPCs proliferative and oligodendrocyte development are unknown. Here, a correlation is demonstrated between the developing vasculature and OPCs response during brain development. Deletion of endothelial stimulator of interferon genes (STING) disrupts angiogenesis by inhibiting farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and thereby reducing cholesterol synthesis. Furthermore, the perturbation of metabolic homeostasis in endothelial cells increases interleukin 17D production which mediates the signal transduction from endothelial cells to OPCs, which inhibits oligodendrocyte development and myelination and causes behavioral abnormalities in adult mice. Overall, these findings indicate how the endothelial STING maintains metabolic homeostasis and contributes to oligodendrocyte precursor cells response in the developing neocortex.
Asunto(s)
Encéfalo , Células Endoteliales , Proteínas de la Membrana , Oligodendroglía , Animales , Ratones , Células Endoteliales/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/citología , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Vaina de Mielina/metabolismo , Transducción de Señal/fisiología , Diferenciación Celular/fisiologíaRESUMEN
Low-dimension metal halide perovskites are attractive for bandgap tunable optoelectronic materials. Among them, 1-D CsPbBr3 quantum wires (QWs) are emerging as promising deep-blue luminescent material. However, the growth dynamics of 1-D perovskite QWs are intricate, making the study and control of 1-D QWs highly challenging. In this study, a strategy for controlling both the length and width of the CsPbBr3 QWs was realized. The temperature-dependent isotropic growth mechanism was revealed and employed as the main tool for the oriented growth of 1-D CsPbBr3 QWs for various aspect ratios. Our results pave the way for the controlled synthesis of ultrasmall perovskite nanocrystals.
RESUMEN
Magterpenes A-C (1-3), three unprecedented meroterpenoids featuring a unique 6/6/6/6/6 polycyclic skeleton, were isolated from the ethanol extract of Magnolia officinalis Rehd. et Wils. The compounds were obtained as racemic mixtures that were completely resolved through chiral columns. Their structures were elucidated by extensive analyses of one-dimensional (1D) and 2D nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, chemical calculations of 1H/13C NMR, and electronic circular dichroism calculations. The compounds were constructed via two Diels-Alder reactions in the proposed biosynthetic pathway. All isolates were evaluated for their nephroprotective and hepatoprotective activities. The results demonstrated that (+)-1 and (-)-1 possessed promising nephroprotective activities in a dose-dependent manner, while (-)-2 and (+)-3 exhibited moderate hepatoprotective activities.
Asunto(s)
Magnolia , Terpenos , Magnolia/química , Terpenos/química , Terpenos/farmacología , Terpenos/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificaciónRESUMEN
Four undescribed sesquiterpenes, atramacrolodes A-D (1-4), along with six known compounds 5-10 were isolated from the rhizome of Atractylodes macrocephala. Compound 3 possessed a new skeleton based on an unprecedented carton-carton connection. Their structures were determined by UV, IR, HRESIMS, NMR spectra, 13Câ NMR calculation with DP4+ analysis, and the comparison of experimental and calculated ECD spectra. Compounds 5 and 8 showed protective effects against paracetamol-induced liver cell injury.
Asunto(s)
Acetaminofén , Atractylodes , Rizoma , Sesquiterpenos de Eudesmano , Atractylodes/química , Rizoma/química , Sesquiterpenos de Eudesmano/aislamiento & purificación , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/farmacología , Humanos , Conformación Molecular , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacologíaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Throughout Chinese history, Hydrangea paniculata Siebold has been utilized as a traditional medicinal herb to treat a variety of ailments associated to inflammation. In a number of immune-mediated kidney disorders, total coumarins extracted from Hydrangea paniculata (HP) have demonstrated a renal protective effect. AIM OF THE STUDY: To investigate renal beneficial effect of HP on experimental Adriamycin nephropathy (AN), and further clarify whether reversing lipid metabolism abnormalities by HP contributes to its renoprotective effect and find out the underlying critical pathways. MATERIALS AND METHODS: After establishment of rat AN model, HP was orally administrated for 6 weeks. Biochemical indicators related to kidney injury were determined. mRNAs sequencing using kidney tissues were performed to clarify the underlying mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, western blot, molecular docking, and drug affinity responsive target stability (DARTS) assay was carried out to further explore and confirm pivotal molecular pathways and possible target by which HP and 7-hydroxylcoumarin (7-HC) played their renal protection effect via modulating lipid metabolism. RESULTS: HP could significantly improve renal function, and restore renal tubular abnormal lipid metabolism and interstitial fibrosis in AN. In vitro study demonstrated that HP and its main metabolite 7-HC could reduce ADR-induced intracellular lipid deposition and fibrosis characteristics in renal tubular cells. Mechanically, HP and 7-HC can activate AMP-activated protein kinase (AMPK) via direct interaction, which contributes to its lipid metabolism modulation effect. Moreover, HP and 7-HC can inhibit fibrosis by inhibiting CCAAT/enhancer binding protein beta (C/EBPß) expression in renal tubular cells. Normalization of lipid metabolism by HP and 7-HC further provided protection of mitochondrial structure integrity and inhibited the nuclear factor kappa-B (NF-κB) pathway. Long-term toxicity using beagle dogs proved the safety of HP after one-month administration. CONCLUSION: Coumarin derivates from HP alleviate adriamycin-induced lipotoxicity and fibrosis in kidney through activating AMPK and inhibiting C/EBPß.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína beta Potenciadora de Unión a CCAAT , Cumarinas , Doxorrubicina , Hydrangea , Animales , Doxorrubicina/toxicidad , Cumarinas/farmacología , Cumarinas/aislamiento & purificación , Masculino , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Hydrangea/química , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratas Sprague-Dawley , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Simulación del Acoplamiento Molecular , Metabolismo de los Lípidos/efectos de los fármacos , Línea Celular , Extractos Vegetales/farmacología , Extractos Vegetales/química , UmbeliferonasRESUMEN
In rice-vegetable rotation systems in tropical areas, a large amount of nitrate nitrogen accumulates after fertilization in the melon and vegetable season, which leads to the leaching of nitrate nitrogen and a large amount of N2O emission after the seasonal flooding of rice, which leads to nitrogen loss and intensification of the greenhouse effect. How to improve the utilization rate of nitrate nitrogen and reduce N2O emissions has become an urgent problem to be solved. Six treatments were set up [200 mg·kg-1 KNO3 (CK); 200 mg·kg-1 KNO3 + 2% biochar addition (B); 200 mg·kg-1 KNO3+1% peanut straw addition (P); 200 mg·kg-1 KNO3 + 2% biochar + 1% peanut straw addition (P+B); 200 mg·kg-1 KNO3 + 1% rice straw addition (R); 200 mg·kg-1 KNO3 + 2% biochar+1% rice straw addition (R+B)] and cultured at 25â for 114 d to explore the effects of organic material addition on greenhouse gas emissions and nitrogen use after flooding in high nitrate nitrogen soil. The results showed that compared with that in CK, adding straw or combining straw with biochar significantly increased soil pH (P<0.05). The B and P treatments significantly increased the cumulative N2O emissions by 41.6% and 28.5% (P<0.05), and the P+B, R, and R+B treatments significantly decreased the cumulative N2O emissions by 14.1%, 24.7%, and 36.7% (P<0.05), respectively. The addition of straw increased the net warming potential of greenhouse gases (NGWP). The addition of coir biochar significantly reduced the effect of straw on NGWP (P<0.05). The combined application of straw and biochar decreased NGWP, and P+B significantly decreased NGWP, but that with R+B was not significant (P>0.05). Adding straw or biochar significantly increased soil microbial biomass carbon (MBC) (P<0.05), and that of P+B was the highest (502.26 mg·kg-1). The combined application of straw and biochar increased soil microbial biomass nitrogen (MBN), and that of P+B was the highest. The N2O emission flux was negatively correlated with pH (P<0.01) and positively correlated with NH4+-N and NO3--N (P<0.01). The cumulative emission of N2O was negatively correlated with MBN (P<0.05). There was a significant negative correlation between NO3--N and MBN (P<0.01), indicating that the reduction in NO3--N was likely to be held by microorganisms, and the increase in the microbial hold of NO3--N also reduced N2O emission. In conclusion, the combined application of peanut straw and coconut shell biochar could significantly inhibit N2O emission and increase soil MBC and MBN, which is a reasonable measure to make full use of nitrogen fertilizer, reduce nitrogen loss, and slow down N2O emission after the season of Hainan vegetables.
Asunto(s)
Gases de Efecto Invernadero , Oryza , Suelo/química , Gases de Efecto Invernadero/análisis , Verduras , Agricultura/métodos , Nitratos , Nitrógeno , Óxido Nitroso/análisis , Carbón Orgánico , China , FertilizantesRESUMEN
In order to study the safe utilization of acid cadmium ï¼Cdï¼ contaminated soilï¼ light and moderate Cd-contaminated farmland in Shangluoï¼ Shaanxi Province was taken as the research objectï¼ and limeï¼ biocharï¼ and calcium magnesium phosphate fertilizer were applied. Through the wheat-maize rotation experimentï¼ the safe utilization effect of different amounts of passivator on Cd-contaminated soil was exploredï¼ and the best ratio of passivator was selected. The results showed thatï¼ â the soil quality could be improved to varying degrees by applying the passivator. â¡ After the application of amendmentsï¼ the grain yield of wheat and maize increased to different degrees. ⢠The lime 2 340 kg·hm-2 ï¼C3ï¼ treatment had the best effectï¼ which increased the soil pH of wheat and corn by 1.453 and 1.717 unitsï¼ respectivelyï¼ and reduced the available Cd content by 34.38% and 30.20%ï¼ respectively. ⣠The application of biochar 1 800 kg·hm-2 ï¼B2ï¼ treatment had the best effect on reducing the Cd contents in wheat rootsï¼ strawsï¼ and grainsï¼ which were significantly reduced by 53.60%ï¼ 38.86%ï¼ and 52.96%ï¼ respectivelyï¼ compared with that in CK. The Cd content in wheat grains was reduced to 0.09 mg·kg-1ï¼ which was lower than the limit value of wheat Cd ï¼0.1 mg·kg-1ï¼ specified in the "National food safety standard food pollutant limit" ï¼GB 2762-2017ï¼. The application of the biochar 1 260 kg·hm-2 ï¼B1ï¼ treatment had the best comprehensive effect on reducing the Cd contents of maize rootsï¼ strawsï¼ and grainsï¼ which were significantly reduced by 43.74%ï¼ 53.20%ï¼ and 94.57%ï¼ respectivelyï¼ compared with that in CK. The Cd content of maize grains was reduced to 0.001 9 mg·kg-1ï¼ which was far lower than the limit value of maize Cd ï¼0.1 mg·kg-1ï¼ specified in the "National food safety standard food pollutant limit" ï¼GB 2762-2017ï¼. Thereforeï¼ under the conditions of the field experimentï¼ considering the influence of various indexesï¼ biochar had the best effect on farmland soil in the wheat-maize rotation area with mild to moderate Cd pollution.
Asunto(s)
Compuestos de Calcio , Contaminantes Ambientales , Oryza , Óxidos , Contaminantes del Suelo , Granjas , Cadmio/análisis , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Suelo/química , TriticumRESUMEN
Three new monoterpene phenol dimers, bisbakuchiols V-X (1-3), and two bakuchiol ethers (4 and 5), along with four known compounds (6-9) were isolated from the fruits of Psoralea corylifolia. Their structures were elucidated based on extensive spectral analysis. The absolute configurations of 1, 2, 4, and 5 were specified by quantum chemical calculations of ECD spectra.
Asunto(s)
Fenol , Psoralea , Fenol/análisis , Frutas/química , Psoralea/química , Monoterpenos , Estructura Molecular , Fenoles/químicaRESUMEN
To find structurally previously undescribed compounds with pharmacological effects from Prismatomeris tetrandra (Roxb.) K. Schum (Rubiaceae), thirteen undescribed tetrahydroanthraquinones (1â¼13) named prisconnatanones Jâ¼V and seven known anthraquinones (14â¼20) were isolated and characterized. The structures of these compounds were elucidated by detailed spectroscopic analyses, and their absolute configurations were established by modified Mosher's method and ECD calculations. The antitumor cell proliferative activities of prisconnatanones Jâ¼V were determined. Among them, prisconnatanones J possessed high antitumor cell proliferation in HGC27 cells (IC50, 0.792 µM) by blocking HGC27 cells in the S phase and significantly inducing apoptosis in HGC27 cells. Prisconnatanone J has no cytotoxicity to normal gastric cells line (GES-1) at 10 µM and showed a considerable selectivity for HGC27 cells. Prisconnatanone J can potentially inhibit tumor cell proliferation and should be further investigated.
Asunto(s)
Rubiaceae , Proliferación Celular , Línea Celular Tumoral , Rubiaceae/química , Apoptosis , Estructura MolecularRESUMEN
Six pairs of enantiomeric dilignans, (+)/(-)-magdiligols A-F, have been isolated from an ethanolic extract of the barks of Magnolia officinalis var. biloba. Their chemical structures were elucidated by extensive spectroscopic analyses, NMR calculation with DP4+ analysis, and the electronic circular dichroism spectra calculation. (+)/(-)-1-3 possessed a dihydrobenzopyran ring, while a propyl chain of 1 was linked via ether bond. (+)/(-)-Magdiligols D and E ((+)/(-)-4 and 5) were dilignans possessing a furan ring. (+)-Magdiligol B ((+)/(-)-2), (+)/(-)-magdiligol C ((+)/(-)-3), and racemes 2, 3, and 5 showed potential hepatoprotective effects against APAP-induced HepG2 cell damage, increased the cell viability from 65.4% to 72.7, 78.7.76.6, 73.9, 77.9 and 73.2%, via decreasing the level of the live enzymes ALH and LDH consistently. (+)/(-)-Magdiligols B-D ((+)/(-)-2-4) and (+)/(-)-magdiligol F ((+)/(-)-6) exhibited significant antioxidative activity. (+)/(-)-Magdiligols B-C ((+)/(-)-2 and 3), (-)-magdiligol D ((-)-4), and (+)-magdiligol E ((+)-5) displayed significant PTP1B inhibitory activity with IC50 values 1.41-3.42 µM. (+)/(-)-Magdiligol B ((+)/(-)-2), and its raceme (2) demonstrated α-glucosidase inhibitory activity with the IC50 values 1.47, 2.88 and 1.85 µM, respectively.
Asunto(s)
Magnolia , Humanos , Magnolia/química , Espectroscopía de Resonancia Magnética , Células Hep G2 , Estructura MolecularRESUMEN
The widely available crop oil is an effective alternative to the increasingly scarce marine fish oil. However, simple alternative strategies have led to declining growth and the edible value of farmed fish. It is worthwhile to explore the effects of micro supplements in diets to improve the tolerance of fish to different dietary lipid sources, which finally optimizes the feeding strategies. This study aimed to investigate the regulation of L-carnitine and dietary oil conditions on nutrient composition, lipid metabolism, and glucose regulation of Rhynchocypris lagowskii. Four diets were prepared according to fish oil, fish oil supplemented with L-carnitine, corn oil, and corn oil supplemented with L-carnitine, and FO, LCFO, CO, and LCCO were labeled, respectively. R. lagowskii was fed experimental diets for 8 weeks, and the glucose tolerance test was performed. The CO diet significantly resulted in higher crude lipid content in muscle but a lower level of serum lipid parameters of R. lagowskii than the FO diet. However, dietary L-carnitine supplementation significantly reduced the crude lipid content in the hepatopancreas and muscle of the fish fed with the CO diet yet increased the serum lipid parameters. Additionally, the crude lipid content of muscle was reduced in the fish fed with an FO diet supplemented with L-carnitine. Compared with the FO diet, the CO diet significantly reduced the ratio of n3/n6 polyunsaturated fatty acid in the hepatopancreas and muscle of R.lagowskii. Dietary L-carnitine supplementation significantly reduced the contents of total saturated fatty acids and total monounsaturated fatty acids in hepatopancreas under both dietary lipid sources. The CO diet significantly up-regulated the expression of genes related to lipid uptake and adipogenesis in hepatopancreas, including lipoprotein lipase (lpl), acetyl-coenzyme A carboxylase alpha (accα), and sterol regulatory element binding protein-1 (srebp1), compared with the FO diet. While dietary L-carnitine supplementation significantly down-regulated the expressions of lpl, accα, srebp1, and fatty acid synthase in hepatopancreas and muscle of fish under both dietary lipid sources, along with up-regulated expression of carnitine palmitoyltransferase 1 in hepatopancreas. Moreover, the fish fed with a CO diet significantly increased the expression of glucose uptake and clearance and significantly down-regulated the expressions of glucose regulation-related genes, including glucose transporter 1, glycogen synthase 1, and phosphofructokinase in hepatopancreas and muscle, resulting in slower glucose uptake and clearance than fish fed with FO diet. Nevertheless, dietary L-carnitine supplementation up-regulated the expression of gluconeogenesis-related genes, including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the hepatopancreas of R. lagowskii under both dietary lipid sources. In conclusion, a higher dietary n6 PUFA resulted in lipid deposition, decreased serum lipid parameters, and limited serum glucose utilization of R. lagowskii. While the regulatory effect of L-carnitine on lipid metabolism and glucose utilization of R. lagowskii varies with dietary lipid sources and tissues.
Asunto(s)
Ácidos Grasos Omega-3 , Metabolismo de los Lípidos , Animales , Aceite de Maíz , Carnitina/farmacología , Glucosa , Grasas de la Dieta , Dieta/veterinaria , Aceites de Pescado , Suplementos DietéticosRESUMEN
PURPOSE: ATP6V1A variants have been identified in patients with highly variable phenotypes such as autosomal dominant epileptic encephalopathy and autosomal recessive cutis laxa. However, the mechanism underlying phenotype variation is unknown. We screened ATP6V1A variants in patients with epilepsy and analyzed the genotype-phenotype correlation to explain the mechanism underlying phenotypic variations. METHODS: We performed trio-based whole-exome sequencing in people with epilepsy without acquired causes. All previously reported ATP6V1A variants were systematically retrieved from the HGMD and PubMed databases. RESULTS: Three novel de novo ATP6V1A variants, including c.749G>C/p.Gly250Ala, c.782A>G/p.Gln261Arg, and c.1103T>C/p.Met368Thr, were identified in three unrelated cases with childhood focal (partial) epilepsy. None of the variants were listed in any public population database and evaluated as likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics (ACMG). All persons showed good responses to anti-seizure medication and psychomotor development was normal. Further analysis showed that monoallelic missense variants were associated with epilepsy with variable severity, whereas biallelic variants resulted in developmental abnormalities of multisystem that may result in early lethality. CONCLUSION: Childhood focal epilepsy with favorable outcome was probably a novel phenotype of ATP6V1A. ATP6V1A variants are associated with a range of phenotypes that correlate with genotypes. The relationship between phenotype severity and the genotype (genetic impairment) of ATP6V1A variants helps explain the phenotypic variations.
Asunto(s)
Epilepsias Parciales , Epilepsia , ATPasas de Translocación de Protón Vacuolares , Niño , Humanos , Epilepsia/genética , Genotipo , Fenotipo , Estudios de Asociación Genética , Mutación Missense , ATPasas de Translocación de Protón Vacuolares/genéticaRESUMEN
OBJECTIVES: The DYNC1H1 variants are associated with abnormal brain morphology and neuromuscular disorders that are accompanied by epilepsy. This study aimed to explore the relationship between DYNC1H1 variants and epilepsy. MATERIALS AND METHODS: Trios-based whole-exome sequencing was performed on patients with epilepsy. Previously reported epilepsy-related DYNC1H1 variants were systematically reviewed to analyse genotype-phenotype correlation. RESULTS: The DYNC1H1 variants were identified in four unrelated cases of infant-onset epilepsy, including two de novo and two biallelic variants. Two patients harbouring de novo missense variants located in the stem and stalk domains presented with refractory epilepsies, whereas two patients harbouring biallelic variants located in the regions between functional domains had mild epilepsy with infrequent focal seizures and favourable outcomes. One patient presented with pachygyria and neurodevelopmental abnormalities, and the other three patients presented with normal development. These variants have no or low frequencies in the Genome Aggregation Database. All the missense variants were predicted to be damaging using silico tools. Previously reported epilepsy-related variants were monoallelic variants, mainly de novo missense variants, and all the patients presented with severe epileptic phenotypes or developmental delay and malformations of cortical development. Epilepsy-related variants were clustered in the dimerization and stalk domains, and generalized epilepsy-associated variants were distributed in the stem domain. CONCLUSION: This study suggested that DYNC1H1 variants are potentially associated with infant-onset epilepsy without neurodevelopmental disorders, expanding the phenotypic spectrum of DYNC1H1. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic variation.
Asunto(s)
Epilepsia Generalizada , Epilepsia , Trastornos del Neurodesarrollo , Lactante , Humanos , Mutación , Epilepsia/genética , Trastornos del Neurodesarrollo/genética , Mutación Missense , Fenotipo , Dineínas Citoplasmáticas/genéticaRESUMEN
Background: In the phase 3 FLAURA trial, osimertinib was compared with first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) as a first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). Osimertinib showed longer progression-free survival (PFS), overall survival (OS), and a similar safety profile. However, more studies demonstrating the effectiveness and safety of osimertinib as a first-line strategy are needed in real-world populations. Methods: We enrolled 1,556 patients with EGFR-mutated stage IIIc-IV NSCLC from the CAPTRA-Lung database. All patients received either osimertinib (n=202) or a first-generation EGFR-TKI (n=1,354) as their initial treatment. To adjust for differences in baseline characteristics between two groups, 1:2 propensity score matching (PSM) was performed. Propensity scores included gender, age, Eastern Cooperative Oncology Group performance status score, smoking history, family history of tumor, pathology, EGFR mutations, and central nervous system (CNS) metastases. The standardized mean differences (SMD) before and after PSM were calculated to examine the balance of covariate distributions between two groups. Results: After PSM, 202 patients receiving osimertinib and 404 patients receiving first-generation EGFR-TKIs were finally identified. SMD of each matched variable is less than 0.10. The median PFS was 19.4 months [95% confidence interval (CI): 14.3-24.4] in the osimertinib arm and 10.9 months (95% CI: 9.3-12.5) in the comparator arm [hazard ratio (HR) for progression, 0.47; 95% CI: 0.38-0.59; P<0.001). The median OS was 40.5 months (95% CI: 27.1-54.0) vs. 34.3 months (95% CI: 30.6-38.0) in two groups, respectively (HR for death, 0.76; 95% CI: 0.58-1.00; P=0.045). The incidence of grade 3 adverse events (AEs) between the two groups was 1% and 4.2%, respectively. No grade 4 AEs and treatment-related deaths were reported in both groups. Conclusions: In real-world settings, osimertinib demonstrates longer PFS and OS, with a similar safety profile to that of comparator EGFR-TKIs when used as a first-line strategy in NSCLC patients.
RESUMEN
In this paper, a land use management information system based on ArcGIS 3D modeling technology is constructed to process land use policy decisions through ArcSDE spatial data engine and Oracle relational database to realize a land use planning management information system. Using genetic algorithm in order to use for regional land use optimization allocation, the introduction of multi-intelligent body system in this algorithm will be able to enhance the optimization search ability of the algorithm and make the genetic algorithm to obtain land use planning supported. The behavior of the main body of the integrated land use planning decision maker will guide the development of the quantitative structure of land use in terms of spatial layout toward sustainability. The experimental results prove that the target is better than the other three types of scenarios under the integrated benefit model, then it is reduced by 18.67%, 15.98% and 16.61%, and the number of spatially contiguous areas is increased by 9.4%, 13.8% and 0.8%, respectively. The proposed model can reasonably configure the regional land use quantitative results and spatial layout, and coordinate the needs of different land use decision makers.
RESUMEN
Acute pain-related pathology is a significant challenge in clinical practice, and the limitations of traditional pain-relief drugs have made it necessary to explore alternative approaches. Photobiomodulation (PBM) therapy using CO2 laser has emerged as a promising option. In this study, we aimed to identify the optimal parameters of CO2 laser irradiation for acute pain relief through in vivo and in vitro experiments. First, we validated the laser intensity used in this study through bone marrow mesenchymal stem cells (BMSCs) experiments to ensure it will not adversely affect stem cell viability and morphology. Then we conducted a detailed evaluation of the duty cycle and frequency of CO2 laser by the hot plate and formalin test. Results showed a duty cycle of 3% and a frequency of 25 kHz produced the best outcomes. Additionally, we investigated the potential mechanisms underlying the effects of CO2 laser by immunohistochemical staining, and found evidence to suggest that the opioid receptor may be involved in its analgesic effect. In conclusion, this study provides insights into the optimal parameters and underlying mechanisms of CO2 laser therapy for effective pain relief, thereby paving the way for future clinical applications.