Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Heliyon ; 10(15): e35502, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170113

RESUMEN

To evaluate the efficacy of the 18F-AlF-NOTA-RGD2 positron emission tomography (PET)/computed tomography (CT) molecular probe for the noninvasive staging of liver fibrosis in mini pigs, a potential alternative to invasive diagnostic methods was revealed. This study used 18F-AlF-NOTA-RGD2 PET/CT imaging of mini pigs to assess liver fibrosis. The methods included synthesis and quality control of the molecular probe, establishment of an animal model of liver fibrosis, blood serum enzymatic tests, histopathological examination, PET/CT imaging, collagen content and expression, and mitochondrial reserve function assessment. The 18F-AlF-NOTA-RGD2 PET/CT molecular probe effectively differentiated various stages of liver fibrosis in mini pigs. Blood serum enzymatic tests revealed distinct stages of liver fibrosis, revealing significant increases in AST, ALT, TBIL, and DBIL levels as fibrosis advanced. Notably, ALT levels increased markedly in severe fibrosis patients. A gradual increase in collagen deposition and increasing α-SMA RNA expression and protein levels effectively differentiated between mild and severe fibrosis stages. Pathological examinations and Sirius Red staining confirmed these findings, highlighting substantial increases in collagen accumulation. PET/CT imaging results aligned with histopathological findings, showing that increased radiotracer uptake correlated with fibrosis severity. Assessments of mitochondrial function revealed a decrease in total liver glutathione content and mitochondrial reserve capacity, especially in patients with severe fibrosis. The 18F-AlF-NOTA-RGD2 PET/CT molecular probe is a promising tool for the noninvasive assessment of liver fibrosis, offering potential benefits over traditional diagnostic methods in hepatology.

2.
Environ Pollut ; : 124783, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173864

RESUMEN

Understanding the factors that drive PM2.5 concentrations in cities with varying population and land areas is crucial for promoting sustainable urban population health. This knowledge is particularly important for countries where air pollution is a significant challenge. Most existing studies have investigated either anthropogenic or environmental factors in isolation, often in limited geographic contexts; however, this study fills this knowledge gap. We employed a multimethodological approach, using both multiple linear regression models and geographically weighted regression (GWR), to assess the combined and individual effects of these factors across different cities in China. The variables considered were urban built-up area, land consumption rate (LCR), population size, population growth rate (PGR), longitude, and latitude. Compared with other studies, this study provides a more comprehensive understanding of PM2.5 drivers. The findings of this study showed that PGR and population size are key factors affecting PM2.5 concentrations in smaller cities. In addition, the extent of urban built-up areas exerts significant influence in medium and large cities. Latitude was found to be a positive predictor for PM2.5 concentrations across all city sizes. Interestingly, the northeast, south, and southwest regions demonstrated lower PM2.5 levels than the central, east, north, and northwest regions. The GWR model underscored the importance of considering spatial heterogeneity in policy interventions. However, this research is not without limitations. For instance, international pollution transfers were not considered. Despite the limitation, this study advances the existing literature by providing an understanding of how both anthropogenic and environmental factors, in conjunction with city scale, shape PM2.5 concentrations. This integrated approach offers invaluable insights for tailoring more effective air pollution management strategies across cities of different sizes and characteristics.

3.
BMC Cancer ; 24(1): 1008, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143584

RESUMEN

BACKGROUND: Systemic conversion therapy provides patients with initially unresectable hepatocellular carcinoma (HCC) the chance to salvage radical liver resection and superior survival outcomes, but the optimal conversion strategy is unclear. METHODS: A systematic literature search was conducted on PubMed, EMBASE, Web of Science, Scopus, and the Cochrane Library between 2007 and 2024 focusing on studies reporting conversion therapy for HCC. The treatment groups were divided into Tyrosine kinase inhibitors (TKI), TKI plus loco-regional therapy (LRT), TKI plus anti-PD-1 therapy (TKI + PD-1), TKI + PD-1 + LRT, immune checkpoint inhibitors (ICI) plus LRT, and Atezolizumab plus bevacizumab (A + T) groups. The conversion to surgery rate (CSR), objective response rate (ORR), grade ≥ 3 treatment-related adverse events (AEs), overall survival (OS) and progression-free survival (PFS) were analyzed. RESULTS: 38 studies and 4,042 patients were included. The pooled CSR were 8% (95% CI, 5-12%) in TKI group, 13% (95% CI, 8-19%) in TKI + LRT group, 28% (95% CI, 19-37%) in TKI + PD-1 group, 33% (95% CI, 25-41%) in TKI + PD-1 + LRT group, 23% (95% CI, 1-46%) in ICI + LRT group, and 5% (95% CI, 3-8%) in A + T group, respectively. The pooled HR for OS (0.45, 95% CI, 0.35-0.60) and PFS (0.49, 95% CI, 0.35-0.70) favored survival benefit of conversion surgery. Subgroup analysis revealed that lenvatinib + PD-1 + LRT conferred higher CSR of 35% (95% CI, 26-44%) and increased ORR of 70% (95% CI, 56-83%). CONCLUSIONS: The current study indicates that TKI + PD-1 + LRT, especially lenvatinib + PD-1 + LRT, may be the superior conversion therapy with a manageable safety profile for patients with initially unresectable HCC. The successful conversion therapy favors the superior OS and PFS compared with systemic treatment alone. TRIAL REGISTRATION: International prospective register of systematic reviews (PROSPERO) (registration code: CRD 42024495289).


Asunto(s)
Carcinoma Hepatocelular , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Supervivencia sin Progresión
4.
BMC Public Health ; 24(1): 2196, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138466

RESUMEN

PURPOSE OF REVIEW: There are significant differences in the transmission rate and mortality rate of COVID-19 under environmental conditions such as seasons and climates. However, the impact of environmental factors on the role of the COVID-19 pandemic and the transmission mechanism of the SARS-CoV-2 is unclear. Therefore, a comprehensive understanding of the impact of environmental factors on COVID-19 can provide innovative insights for global epidemic prevention and control policies and COVID-19 related research. This review summarizes the evidence of the impact of different natural and social environmental factors on the transmission of COVID-19 through a comprehensive analysis of epidemiology and mechanism research. This will provide innovative inspiration for global epidemic prevention and control policies and provide reference for similar infectious diseases that may emerge in the future. RECENT FINDINGS: Evidence reveals mechanisms by which natural environmental factors influence the transmission of COVID-19, including (i) virus survival and transport, (ii) immune system damage, (iii) inflammation, oxidative stress, and cell death, and (iiii) increasing risk of complications. All of these measures appear to be effective in controlling the spread or mortality of COVID-19: (1) reducing air pollution levels, (2) rational use of ozone disinfection and medical ozone therapy, (3) rational exposure to sunlight, (4) scientific ventilation and maintenance of indoor temperature and humidity, (5) control of population density, and (6) control of population movement. Our review indicates that with the continuous mutation of SARS-CoV-2, high temperature, high humidity, low air pollution levels, and low population density more likely to slow down the spread of the virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/prevención & control , Humanos , Contaminación del Aire/efectos adversos , Pandemias
5.
Fish Shellfish Immunol ; 153: 109830, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142374

RESUMEN

Cuticle proteins (CPs) are the vital components of the cuticle and chitin lining covering the digestive tract of crustaceans. In this study, four new CP genes (designated as EsCP3, EsCP4, EsCP5, and EsCP8) were initially cloned and identified from the Chinese mitten crab Eriocheir sinensis. EsCP3/4/5/8 included 375, 411, 381, and 570 bp open reading frame encoding 124, 136, 126, and 189 amino acid proteins, respectively. Except for EsCP8, EsCP3/4/5 all contained a Chitin_bind_4 domain. EsCP3/4/5/8 were clustered into different groups in the phylogenetic tree. Quantitative real-time PCR results indicated that four EsCP genes have different patterns of tissue distribution. Changes in the expression levels of these four EsCP genes were observed in the intestine of crabs under Vibrio parahaemolyticus challenge. RNA interference assay showed that the knockdown of EsCPs in the intestine could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. In addition, the knockdown of EsRelish in the intestine decreased the expression levels of these four EsCP genes. These results indicated that EsCPs were involved in regulating the expression of AMPs, and EsCPs were regulated by EsRelish.

6.
Comput Biol Med ; 179: 108844, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981214

RESUMEN

This review delves into the burgeoning field of explainable artificial intelligence (XAI) in the detection and analysis of lung diseases through vocal biomarkers. Lung diseases, often elusive in their early stages, pose a significant public health challenge. Recent advancements in AI have ushered in innovative methods for early detection, yet the black-box nature of many AI models limits their clinical applicability. XAI emerges as a pivotal tool, enhancing transparency and interpretability in AI-driven diagnostics. This review synthesizes current research on the application of XAI in analyzing vocal biomarkers for lung diseases, highlighting how these techniques elucidate the connections between specific vocal features and lung pathology. We critically examine the methodologies employed, the types of lung diseases studied, and the performance of various XAI models. The potential for XAI to aid in early detection, monitor disease progression, and personalize treatment strategies in pulmonary medicine is emphasized. Furthermore, this review identifies current challenges, including data heterogeneity and model generalizability, and proposes future directions for research. By offering a comprehensive analysis of explainable AI features in the context of lung disease detection, this review aims to bridge the gap between advanced computational approaches and clinical practice, paving the way for more transparent, reliable, and effective diagnostic tools.


Asunto(s)
Inteligencia Artificial , Biomarcadores , Enfermedades Pulmonares , Humanos , Enfermedades Pulmonares/diagnóstico , Biomarcadores/metabolismo
7.
Poult Sci ; 103(9): 103991, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991387

RESUMEN

The S2 subunit of infectious bronchitis virus (IBV) is a heavily glycosylated protein that can impact various characteristics of the virus. It is currently known that N-glycosylation modifications are predominantly located on the S2 subunit. However, the exact role of their N-glycosylation modification remains undisclosed. To elucidate the function of these N-glycosylation sites, we identified 14 common sites distributed on the S2 subunit of the 5 genotypes of IBV in present study. Subsequently, we selected 7 sites to generate mutants and assessed their impact on viral virulence, replication ability, and antigenicity. Our finding revealed that only 2 substitutions, N545S and K717N, increased the viral replication titer and antigenicity, and ultimately the pathogenicity in chicks. To delve into the mechanisms underlying this increased pathogenicity, we discovered that K717N can change the structure of antigenic epitopes. The N545S substitution not only influenced antigenic epitope structure, but also enhanced the ability of the virus to enter CEKs during the early stages of viral replication. These results suggest that the enhanced viral pathogenicity associated with N545S and K717N substitutions is multifaceted, with acceleration of the viral membrane fusion process and alterations in epitope structure representing crucial factors in the capability of N-glycosylation modifications to boost viral virulence. These insights provide valuable guidance for the efficient development of live attenuated vaccines.


Asunto(s)
Pollos , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/patogenicidad , Virus de la Bronquitis Infecciosa/fisiología , Animales , Glicosilación , Enfermedades de las Aves de Corral/virología , Virulencia , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Replicación Viral , Sustitución de Aminoácidos
8.
mLife ; 3(2): 307-316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948141

RESUMEN

The microbial synthesis of sulfonolipids within the human body is likely involved in maintaining human health or causing diseases. However, the enzymes responsible for their biosynthesis remain largely unknown. In this study, we identified and verified the role of 3-ketocapnine reductase, the third-step enzyme, in the four-step conversion of l-phosphoserine into sulfobacin B both in vivo and in vitro. This finding builds upon our previous research into sulfonolipid biosynthesis, which focused on the vaginal bacterium Chryseobacterium gleum DSM 16776 and the gut bacterium Alistipes finegoldii DSM 17242. Through comprehensive gene mapping, we demonstrate the widespread presence of potential sulfonolipid biosynthetic genes across diverse bacterial species inhabiting various regions of the human body. These findings shed light on the prevalence of sulfonolipid-like metabolites within the human microbiota, suggesting a potential role for these lipid molecules in influencing the intricate biointeractions within the complex microbial ecosystem of the human body.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38972728

RESUMEN

BACKGROUND AND AIM: There is a pressing need for non-invasive preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). This study investigates the potential of exosome-derived mRNA in plasma as a biomarker for diagnosing MVI. METHODS: Patients with suspected HCC undergoing hepatectomy were prospectively recruited for preoperative peripheral blood collection. Exosomal RNA profiling was conducted using RNA sequencing in the discovery cohort, followed by differential expression analysis to identify candidate targets. We employed multiplexed droplet digital PCR technology to efficiently validate them in a larger sample size cohort. RESULTS: A total of 131 HCC patients were ultimately enrolled, with 37 in the discovery cohort and 94 in the validation cohort. In the validation cohort, the expression levels of RSAD2, PRPSAP1, and HOXA2 were slightly elevated while CHMP4A showed a slight decrease in patients with MVI compared with those without MVI. These trends were consistent with the findings in the discovery cohort, although they did not reach statistical significance (P > 0.05). Notably, the expression level of exosomal PRPSAP1 in plasma was significantly higher in patients with more than 5 MVI than in those without MVI (0.147 vs 0.070, P = 0.035). CONCLUSION: This study unveils the potential of exosome-derived PRPSAP1 in plasma as a promising indicator for predicting MVI status preoperatively.

10.
Nat Commun ; 15(1): 4901, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851779

RESUMEN

Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 µg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Animales , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Humanos , Familia de Multigenes , Ratones , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Genoma Bacteriano/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Biología Computacional/métodos , Cisteína/metabolismo , Cisteína/química
11.
ACS Omega ; 9(24): 26058-26065, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911722

RESUMEN

Rabies is a zoonotic infection with the potential to infect all mammals and poses a significant threat to mortality. Although enzyme-linked immunosorbent tests and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) have been established for rabies virus (RABV) detection, they require skilled staff. Here, we introduce a personal glucose meter (PGM)-based nucleic acid (NA-PGM) detection method to diagnose RABV. This method ensures sensitive and convenient RABV diagnosis through hybridization of reverse transcription-recombinase aided amplification (RT-RAA) amplicons with probes labeled with sucrose-converting enzymes, reaching a detection level as low as 6.3 copies/µL equivalent to 12.26 copies. NA-PGM allows for the differentiation of RABV from other closely related viruses. In addition, NA-PGM showed excellent performance on 65 clinical samples with a 100% accuracy rate compared with the widely adopted RT-qPCR method. Thus, our developed NA-PGM method stands out as sensitive, semiquantitative, and portable for RABV detection, showcasing promise as a versatile platform for a wide range of pathogens.

12.
Biotechnol Lett ; 46(4): 713-724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733438

RESUMEN

Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.


Asunto(s)
Metano , Methylocystaceae , Oryza , Rizosfera , Microbiología del Suelo , Oryza/microbiología , Methylocystaceae/genética , Methylocystaceae/metabolismo , Methylocystaceae/aislamiento & purificación , Metano/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , China , Metanol/metabolismo
13.
Antiviral Res ; 227: 105905, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740191

RESUMEN

The rapid emergence of Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) variants, coupled with severe immune evasion and imprinting, has jeopardized the vaccine efficacy, necessitating urgent development of broad protective vaccines. Here, we propose a strategy employing recombinant rabies viruses (RABV) to create a universal SARS-CoV-2 vaccine expressing heterologous tandem receptor-binding domain (RBD) trimer from the SARS-CoV-2 Prototype, Delta, and Omicron strains (SRV-PDO). The results of mouse immunization indicated that SRV-PDO effectively induced cellular and humoral immune responses, and demonstrated higher immunogenicity and broader SARS-CoV-2 neutralization compared to the recombinant RABVs that only expressed RBD monomers. Moreover, SRV-PDO exhibited full protection against SARS-CoV-2 in the challenge assay. This study demonstrates that recombinant RABV expressing tandem RBD-heterotrimer as a multivalent immunogen could elicit a broad-spectrum immune response and potent protection against SARS-CoV-2, making it a promising candidate for future human or veterinary vaccines and offering a novel perspective in other vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Ratones Endogámicos BALB C , Virus de la Rabia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Virus de la Rabia/inmunología , Virus de la Rabia/genética , Vacunas contra la COVID-19/inmunología , Ratones , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Femenino , Humanos , Inmunidad Humoral , Vectores Genéticos , Eficacia de las Vacunas , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/administración & dosificación
14.
Chemistry ; 30(39): e202401333, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38779790

RESUMEN

Research on the chemoselective metal-catalyzed hydrogenation of conjugated π-systems has mostly been focussed on enones. Herein, we communicate the understudied asymmetric hydrogenation of enimines catalyzed by N,P-iridium complexes and chemoselective toward the alkene. A number of enoxime ethers underwent hydrogenation smoothly to yield the desired products in high yield and stereopurity (up to 99 % yield, up to 99 % ee). No hydrogenation of the C=N π-bond was observed under the applied reaction conditions (20 bar H2, rt, DCM). It was demonstrated that the chiral oxime ether could be hydrolyzed into the ketone with complete preservation of the installed stereogenity at the α-carbon. At last, a binding mode of the substrate to the active iridium catalyst and the consequence for the stereoselective outcome was proposed.

15.
Surg Endosc ; 38(6): 3079-3087, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622227

RESUMEN

BACKGROUND: Laparoscopic treatment has been increasingly adopted for giant hepatic hemangioma (HH), but the role of liver resection or enucleation remains uncertain. The aim of this study is to compare the laparoscopic resection (LR) with laparoscopic enucleation (LE) for HH, and to provide evidence on how to choose the most suitable approach for HH. METHODS: A retrospective analysis of HH patients underwent laparoscopic treatment between March 2015 and August 2022 was performed. Perioperative outcomes were compared based on the surgical approaches, and risk factors for increased blood loss was calculated by logistic regression analysis. RESULTS: A total of 127 patients in LR group and 287 patients in LE group were enrolled in this study. The median blood loss (300 vs. 200 mL, P < 0.001) was higher in LE group than that in LR group. Independent risk factors for blood loss higher than 400 mL were tumor size ≥ 10 cm, tumor adjacent to major vessels, tumor occupying right liver or caudate lobe, and the portal phase enhancement ratio (PER) ≥ 38.9%, respectively. Subgroup analysis showed that LR was associated with less blood loss (155 vs. 400 mL, P < 0.001) than LE procedure in patients with high PER value. Both LR and LE approaches exhibited similar perioperative outcomes in patients with low PER value. CONCLUSIONS: Laparoscopic treatment for HH could be feasibly and safely performed by both LE and LR. For patients with PER higher than 38.9%, the LR approach is recommended.


Asunto(s)
Pérdida de Sangre Quirúrgica , Hemangioma , Hepatectomía , Laparoscopía , Neoplasias Hepáticas , Humanos , Laparoscopía/métodos , Femenino , Masculino , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Hepatectomía/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Hemangioma/cirugía , Hemangioma/patología , Adulto , Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Resultado del Tratamiento , Factores de Riesgo , Anciano
16.
J Ethnopharmacol ; 331: 118159, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tanreqing injection (TRQ) is widely used, traditional Chinese medicine (TCM) injection used in China to treat respiratory infections. Modern pharmacological studies have confirmed that TRQ can protect against influenza viruses. However, the mechanism by which TRQ inhibits influenza viruses remains unclear. AIM OF THE STUDY: To explore the therapeutic effects and possible mechanisms of TRQ inhibition by the influenza virus. MATERIALS AND METHODS: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was used to determine the chemical composition of TRQ. Isobaric tags for relative and absolute quantification (iTRAQ) were used to define differential proteins related to TRQ inhibition of viruses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation. For experimental validation, we established an in vitro model of the influenza virus infection by infecting A549 cells with the virus. The detection of the signaling pathway was carried out through qPCR, western blotting,and immunofluorescence. RESULTS: Fifty one components were identified using UPLC/Q-TOF MS. We confirmed the inhibitory effect of TRQ on influenza virus replication in vitro. Ninety nine differentially expressed proteins related to the inhibitory effect of TRQ were identified using iTRAQ. KEGG functional enrichment analysis showed that the TRQ may inhibit influenza virus replication by affecting autophagy. Through network analysis, 29 targets were selected as major targets, and three key targets, HSPA5, PARP1, and GAPDH, may be the TRQ targets affecting autophagy. In vitro experiments showed that TRQ inhibits influenza virus replication by interfering with the expression and localization of STX17 and VAMP8 proteins, thereby promoting the fusion of autophagosomes with lysosomes. CONCLUSION: TRQ inhibits influenza virus replication by promoting the fusion of autophagosomes with lysosomes. We additionally established potential gene and protein targets which are affected by TRQ. Therefore, our findings provide new therapeutic targets and a foundation further studies on influenza treatment with TRQ.


Asunto(s)
Antivirales , Autofagosomas , Medicamentos Herbarios Chinos , Lisosomas , Replicación Viral , Medicamentos Herbarios Chinos/farmacología , Replicación Viral/efectos de los fármacos , Humanos , Células A549 , Antivirales/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Chaperón BiP del Retículo Endoplásmico , Animales , Autofagia/efectos de los fármacos
17.
Sci Total Environ ; 928: 172473, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615773

RESUMEN

Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.


Asunto(s)
Agricultura , Nanotecnología , Enfermedades de las Plantas , Agricultura/métodos , Nanotecnología/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Monitoreo del Ambiente/métodos , Hongos , Nanopartículas
18.
Sci Rep ; 14(1): 6988, 2024 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523175

RESUMEN

Habitat fragmentation has led to a reduction in the geographic distribution of species, making small populations vulnerable to extinction due to environmental, demographic, and genetic factors. The wild plant Chieniodendron hainanense, a species with extremely small populations, is currently facing endangerment and thus requires urgent conservation efforts. Understanding its genetic diversity is essential for uncovering the underlying mechanisms of its vulnerability and for developing effective conservation strategies. In our study, we analyzed 35 specimens from six different populations of C. hainanense using genotyping-by-sequencing (GBS) and single nucleotide polymorphism (SNP) methodologies. Our findings indicate that C. hainanense has limited genetic diversity. The observed heterozygosity across the populations ranged from 10.79 to 14.55%, with an average of 13.15%. We categorized the six populations of C. hainanense into two distinct groups: (1) Diaoluoshan and Baishaling, and (2) Wuzhishan, Huishan, Bawangling, and Jianfengling. The genetic differentiation among these populations was found to be relatively weak. The observed loss of diversity is likely a result of the effects of natural selection.


Asunto(s)
Especies en Peligro de Extinción , Genética de Población , Animales , Flujo Genético , Ecosistema , Polimorfismo de Nucleótido Simple , Variación Genética
19.
Vet J ; 304: 106096, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38503385

RESUMEN

Feline viral rhinotracheitis (FVR) is caused by the feline herpesvirus-1 (FHV-1), which commonly results in upper respiratory symptoms, and can result in death in the kittens and weak cats. Rabies is an infectious disease with zoonotic characteristics highly relevant to public health and also poses a serious threat to cats. Vaccines are the most effective method to control the spread of both FHV-1 and RABV and have the advantage that they produce long-term specific immune responses. In this study, we constructed a bivalent vaccine against FHV-1 and rabies virus (RABV) simultaneously. The vaccine was constructed by cloning FHV-1 gB into a RABV based vector, and the recombinant RABV (SRV9-FHV-gB) expressing the FHV-1 gB protein was rescued. The growth characteristics of SRV9-FHV-gB were analyzed on NA and BSR cells. To assess the immunogenicity of the vaccine, mice and cats were immunized with SRV9-FHV-gB supplemented with Gel02 adjuvant. The SRV9-FHV-gB exhibited the same growth characteristics as the parent virus SRV9 in both BSR cells and NA cells. The safety of SRV9-FHV-gB was evaluated using 5-day-old and 14-day-old suckling mice. The results showed that mice infected with the SRV9-FHV-gB survived for longer than those in the SRV9 group. Mice immunized with inactivated SRV9-FHV-gB produced high titers of specific antibodies against FHV-1 and neutralizing antibodies against RABV. Cats that received three immunizations with SRV9-FHV-gB also produced neutralizing antibodies against both FHV-1 and RABV. This study represents the first time that a bivalent vaccine targeting FHV-1 and RABV has been constructed, laying the foundations and providing inspiration for the development of other multivalent vaccines.


Asunto(s)
Enfermedades de los Gatos , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Enfermedades de los Roedores , Varicellovirus , Gatos , Animales , Femenino , Ratones , Rabia/prevención & control , Rabia/veterinaria , Virus de la Rabia/genética , Vacunas Combinadas , Vacunas Sintéticas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Enfermedades de los Gatos/prevención & control
20.
Front Pharmacol ; 15: 1333087, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545553

RESUMEN

Tumors are still a major threat to people worldwide. Nanodrug delivery and targeting systems can significantly improve the therapeutic efficacy of chemotherapeutic drugs for antitumor purposes. However, many nanocarriers are likely to exhibit drawbacks such as a complex preparation process, limited drug-loading capacity, untargeted drug release, and toxicity associated with nanocarriers. Therefore, new therapeutic alternatives are urgently needed to develop antitumor drugs. Natural products with abundant scaffold diversity and structural complexity, which are derived from medicinal plants, are important sources of new antitumor drugs. Here, two carrier-free berberine (BBR)-based nanoparticles (NPs) were established to increase the synergistic efficacy of tumor treatment. BBR can interact with glycyrrhetinic acid (GA) and artesunate (ART) to self-assemble BBR-GA and BBR-ART NPs without any nanocarriers, respectively, the formation of which is dominated by electrostatic and hydrophobic interactions. Moreover, BBR-GA NPs could lead to mitochondria-mediated cell apoptosis by regulating mitochondrial fission and dysfunction, while BBR-ART NPs induced ferroptosis in tumor cells. BBR-based NPs have been demonstrated to possess significant tumor targeting and enhanced antitumor properties compared with those of simple monomer mixes both in vitro and in vivo. These carrier-free self-assemblies based on natural products provide a strategy for synergistic drug delivery and thus offer broad prospects for developing enhanced antitumor drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA