Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Adv Mater ; : e2400142, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896775

RESUMEN

Ultrasound generates toxic reactive oxygen species (ROS) by acting on sonosensitizers for cancer treatment, and the mechanical damage induced by cavitation effects under ultrasound is equally significant. Therefore, designing a novel sonosensitizer that simultaneously possesses efficient ROS generation and enhanced mechanical effects is promising. In this study, we construct carbon-doped zinc oxide nanoparticles (C-ZnO) for mechano-sonodynamic cancer therapy. The presence of carbon doping optimizes the electronic structure, thereby enhancing the ROS generation triggered by ultrasound, efficiently inducing tumor cell death. On the other hand, the high specific surface area and porous structure brought about by carbon doping enable C-ZnO to enhance the mechanical stress induced by cavitation bubbles under ultrasound irradiation, causing severe mechanical damage to tumor cells. Under the dual effects of sonodynamic therapy and mechanical therapy mediated by C-ZnO, excellent anti-tumor efficacy was demonstrated both in vitro and in vivo, along with a high level of biological safety. This is the first instance of utilizing an inorganic nanomaterial to achieve simultaneous enhancement of ROS production and ultrasound-induced mechanical effects for cancer therapy. This holds significant importance for the future development of novel sonosensitizers and advancing the applications of ultrasound in cancer treatment. This article is protected by copyright. All rights reserved.

2.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38623994

RESUMEN

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Asunto(s)
Caseínas , MicroARNs , Femenino , Animales , Caseínas/genética , Caseínas/metabolismo , Proteínas de la Leche , Cabras/fisiología , Células Epiteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glándulas Mamarias Animales/metabolismo
3.
Nanoscale ; 16(13): 6516-6521, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38469900

RESUMEN

Silicon-germanium (SiGe) alloy nanocrystals (NCs) are promising for advanced optoelectronic applications due to their highly tunable composition and photophysical behaviors. The homogenous dispersion of Si and Ge atoms on the surfaces of SiGe NCs adds a degree of freedom for manipulating the surface chemistry of this type of alloy material. However, the difference in the reactivity between Si and Ge atoms brings additional difficulty in selecting appropriate surface ligands to passivate SiGe NCs. Here we report a mixed-ligand functionalization approach to passivate SiGe NCs effectively. Octadecene and oleylamine molecules serve as co-ligands to cap the surface Si and Ge atoms, respectively, yielding colloidally stable SiGe NCs with high solution dispersity and stable intrinsic near-infrared emission with a microsecond-scale lifetime decay. The resulting particles also show improved hole and electron mobilities of up to 1.1 × 10-6 cm2 V-1 s-1 and 6.3 × 10-6 cm2 V-1 s-1, 2.2 and 1.2 times improvement over the particles only passivated by octadecene ligands.

4.
World J Clin Cases ; 12(4): 859-864, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38322697

RESUMEN

BACKGROUND: Mediastinal emphysema is a condition in which air enters the mediastinum between the connective tissue spaces within the pleura for a variety of reasons. It can be spontaneous or secondary to chest trauma, esophageal perforation, medically induced factors, etc. Its common symptoms are chest pain, tightness in the chest, and respiratory distress. Most mediastinal emphysema patients have mild symptoms, but severe mediastinal emphysema can cause respiratory and circulatory failure, resulting in serious consequences. CASE SUMMARY: A 75-year-old man, living alone, presented with sudden onset of severe epigastric pain with chest tightness after drinking alcohol. Due to the remoteness of his residence and lack of neighbors, the patient was found by his nephew and brought to the hospital the next morning after the disease onset. Computed tomography (CT) showed free gas in the abdominal cavity, mediastinal emphysema, and subcutaneous pneumothorax. Upper gastrointestinal angiography showed that the esophageal mucosa was intact and the gastric antrum was perforated. Therefore, we chose to perform open gastric perforation repair on the patient under thoracic epidural anesthesia combined with intravenous anesthesia. An operative incision of the muscle layer of the patient's abdominal wall was made, and a large amount of subperitoneal gas was revealed. And a continued incision of the peritoneum revealed the presence of a perforation of approximately 0.5 cm in the gastric antrum, which we repaired after pathological examination. Postoperatively, the patient received high-flow oxygen and cough exercises. Chest CT was performed on the first and sixth postoperative days, and the mediastinal and subcutaneous gas was gradually reduced. CONCLUSION: After gastric perforation, a large amount of free gas in the abdominal cavity can reach the mediastinum through the loose connective tissue at the esophageal hiatus of the diaphragm, and upper gastrointestinal angiography can clarify the site of perforation. In patients with mediastinal emphysema, open surgery avoids the elevation of the diaphragm caused by pneumoperitoneum compared to laparoscopic surgery and avoids increasing the mediastinal pressure. In addition, thoracic epidural anesthesia combined with intravenous anesthesia also avoids pressure on the mediastinum from mechanical ventilation.

5.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345452

RESUMEN

Numerous scientific satellites require micronewton thrusters for compensating environmental disturbances. The mass flow control proportional valve plays a crucial role in precisely regulating the thrust. To meet the high resolution and wide range requirements of the thrusters, this paper introduces a novel proportional valve with two sets of independently controllable piezoelectric stack. One set of the piezo-stack is used to compensate the stroke loss of the valve core, mainly caused by the deformation of the valve seat. The valve sealing mechanism is carefully analyzed to reduce the stroke loss. Another set of the stack works as the primary actuator, enabling the high mass flow control resolution. Two sets of independently controlled piezoelectric stacks not only expand the range and improve the range ratio but also provide redundancy and enhance reliability. This means that the actuator can still operate at lower ranges even if one piezo-stack is damaged. The piezo-actuators are assembled using U-shaped connectors, creating a compact and space-efficient overall design. Experimental tests have been conducted to verify the performance of the valve, which demonstrated a mass flow range of 0-675 µg/s with a resolution better than 0.1 µg/s and a flow noise below 0.1 µg/s/Hz1/2 at 0.1 mHz-1 Hz.

6.
Animals (Basel) ; 13(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893889

RESUMEN

Horns are an important breeding trait for sheep. However, no widely recognized viewpoint on the regulatory genes and mechanisms of horns is available, and the genetic basis of the four-horn phenotype (FHP) is unclear. This work conducted a genome-wide association study with 100 sheep genomes from multiple breeds to investigate the genetic basis of the FHP. The results revealed three significant associations (corrected as p < 1.64 × 10-8) of the InDels (CHR2: g.133,742,709delA, g.133,743,215insC, and g.133,743,940delT) for FHP in the intergenic sequence (IGS) between the MTX2 and the LOC105609047 of CHR2. Moreover, 14 significant associations (corrected as p < 1.42 × 10-9) of SNPs with the FHP phenotype were identified in CHR2 and CHR16, including five (e.g., CHR16: g.40,351,378G > A and g.40,352,577G > A) located in the intron of the ADAMTS12 gene, eight (e.g., CHR2: g.133,727,513C > T and g.133,732,145T > G) in the IGS between MTX2 and LOC105609047, and only one (CHR2: g.133,930,761A > G) in the IGS between HOXD1 and MTX2. Obvious divergence was also observed in genotype patterns between the FHP and others (two horns and hornless) in the HOXD1 and ADAMTS12 gene regions. An extremely significant linkage also occurred between Loci I and Loci II within 100 individuals (LD = -156.02186, p < 0.00001). In summary, our study indicated that the genomic sequences from CHR2 and CHR16 contributed to the FHP in sheep, specifically the key candidate genes HOXD1 and ADAMTS12. These results improved our understanding of the Mendelian genetic basis of the FHP in sheep.

7.
Adv Sci (Weinh) ; 10(26): e2301152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395638

RESUMEN

Sonodynamic therapy (SDT) has been widely reported as a noninvasive and high-penetration therapy for cancer; however, the design of an efficient sonosensitizer remains an urgent need. To address this issue, molybdenum disulfide nanoflowers (MoS2 NF) as piezo-sonosensitizers and introduced sulfur vacancies on the MoS2 NF (Sv-MoS2 NF) to improve their piezoelectric property for cancer therapy are designed. Under ultrasonic mechanical stress, the Sv-MoS2 NF resulted in piezoelectric polarization and band tilting, which enhanced the charge carrier separation and migration. This resulted in an improved catalytic reaction for reactive oxygen species (ROS) production, ultimately enhancing the SDT performance. Thanks to the high efficiency of ROS generation, the Sv-MoS2 NF have demonstrated a good anticancer effect in vitro and in vivo. Following a systematic evaluation, Sv-MoS2 NF also demonstrated good biocompatibility. This novel piezo-sonosensitizer and vacancy engineering strategy provides a promising new approach for achieving efficient SDT.


Asunto(s)
Neoplasias , Terapia por Ultrasonido , Humanos , Molibdeno , Especies Reactivas de Oxígeno , Neoplasias/terapia
8.
Sensors (Basel) ; 23(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37430879

RESUMEN

The presence of manufacture error in large mirrors introduces high-order aberrations, which can severely influence the intensity distribution of point spread function. Therefore, high-resolution phase diversity wavefront sensing is usually needed. However, high-resolution phase diversity wavefront sensing is restricted with the problem of low efficiency and stagnation. This paper proposes a fast high-resolution phase diversity method with limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, which can accurately detect aberrations in the presence of high-order aberrations. An analytical gradient of the objective function for phase-diversity is integrated into the framework of the L-BFGS nonlinear optimization algorithm. L-BFGS algorithm is specifically suitable for high-resolution wavefront sensing where a large phase matrix is optimized. The performance of phase diversity with L-BFGS is compared to other iterative method through simulations and a real experiment. This work contributes to fast high-resolution image-based wavefront sensing with a high robustness.

9.
Animals (Basel) ; 13(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37443955

RESUMEN

As important livestock species, pigs provide essential meat resources for humans, so understanding the genetic evolution behind their domestic history could help with the genetic improvement of domestic pigs. This study aimed to investigate the evolution of convergence and divergence under selection in European and Asian domestic pigs by using public genome-wide data. A total of 164 and 108 candidate genes (CDGs) were obtained from the Asian group (wild boar vs. domestic pig) and the European group (wild boar vs. domestic pig), respectively, by taking the top 5% of intersected windows of a pairwise fixation index (FST) and a cross population extended haplotype homozygosity test (XPEHH). GO and KEGG annotated results indicated that most CDGs were related to reproduction and immunity in the Asian group. Conversely, rich CDGs were enriched in muscle development and digestion in the European group. Eight CDGs were subjected to parallel selection of Eurasian domestic pigs from local wild boars during domestication. These CDGs were mainly involved in olfactory transduction, metabolic pathways, and progesterone-mediated oocyte maturation. Moreover, 36 and 18 haplotypes of INPP5B and TRAK2 were identified in this study, respectively. In brief, this study did not only improve the understanding of the genetic evolution of domestication in pigs, but also provides valuable CDGs for future breeding and genetic improvement of pigs.

10.
Zool Res ; 44(2): 303-314, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36785897

RESUMEN

The Boer goat is one of the top meat breeds in modern animal husbandry and has attracted widespread attention for its unique growth performance. However, the genetic basis of muscle development in the Boer goat remains obscure. In this study, we identified specific structural variants in the Boer goat based on genome-wide selection signals and analyzed the basis of the molecular heredity of related candidate genes in muscle development. A total of 9 959 autosomal copy number variations (CNVs) were identified through selection signal analysis in 127 goat genomes. Specifically, we confirmed that the highest signal CNV (HSV) was a chromosomal arrangement containing an approximately 1.11 Mb (CHIR17: 60062304-61171840 bp) duplicated fragment inserted in reverse orientation and a 5 362 bp deleted region (CHIR17:60145940-60151302 bp) with overlapping genes (e.g., ARHGAP10, NR3C2, EDNRA, PRMT9, and TMEM184C). The homozygous duplicated HSV genotype (+/+) was found in 96% of Boer goats but was not detected in Eurasian goats and was only detected in 4% of indigenous African goats. The expression network of three candidate genes ( ARHGAP10, NR3C2, and EDNRA) regulating dose transcription was constructed by RNA sequencing. Results indicated that these genes were involved in the proliferation and differentiation of skeletal muscle satellite cells (SMSCs) and their overexpression significantly increased the expression of SAA3. The HSV of the Boer goat contributed to superior skeletal muscle growth via the dose effects of overlapping genes.


Asunto(s)
Cromosomas Humanos Par 17 , Cabras , Animales , Humanos , Cabras/genética , Variaciones en el Número de Copia de ADN , Genoma , Desarrollo de Músculos
11.
Front Bioeng Biotechnol ; 11: 1110604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761301

RESUMEN

As a minimally invasive drug delivery platform, microneedles (MNs) overcome many drawbacks of the conventional transdermal drug delivery systems, therefore are favorable in biomedical applications. Microneedles with a combined burst and sustained release profile and maintained therapeutic molecular bioactivity could further broaden its applications as therapeutics. Here, we developed a double-network microneedles (DN MNs) based on gelatin methacrylate and acellular neural matrix (GelMA-ACNM). ACNM could function as an early drug release matrix, whereas the addition of GelMA facilitates sustained drug release. In particular, the double-network microneedles comprising GelMA-ACNM hydrogel has distinctive biological features in maintaining drug activity to meet the needs of application in treating different diseases. In this study, we prepared the double-network microneedles and evaluated its morphology, mechanical properties, drug release properties and biocompatibility, which shows great potential for delivery of therapeutic molecules that needs different release profiles in transdermal treatment.

12.
Comput Biol Med ; 153: 106459, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603435

RESUMEN

BACKGROUND AND OBJECTIVE: Despite the numerous studies on extubation readiness assessment for patients who are invasively ventilated in the intensive care unit, a 10-15% extubation failure rate persists. Although breathing variability has been proposed as a potential predictor of extubation failure, it is mainly assessed using simple statistical metrics applied to basic respiratory parameters. Therefore, the complex pattern of breathing variability conveyed by continuous ventilation waveforms may be underexplored. METHODS: Here, we aimed to develop novel breathing variability indices to predict extubation failure among invasively ventilated patients. First, breath-to-breath basic and comprehensive respiratory parameters were computed from continuous ventilation waveforms 1 h before extubation. Subsequently, the basic and advanced variability methods were applied to the respiratory parameter sequences to derive comprehensive breathing variability indices, and their role in predicting extubation failure was assessed. Finally, after reducing the feature dimensionality using the forward search method, the combined effect of the indices was evaluated by inputting them into the machine learning models, including logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting (XGBoost). RESULTS: The coefficient of variation of the dynamic mechanical power per breath (CV-MPd[J/breath]) exhibited the highest area under the receiver operating characteristic curve (AUC) of 0.777 among the individual indices. Furthermore, the XGBoost model obtained the best AUC (0.902) by combining multiple selected variability indices. CONCLUSIONS: These results suggest that the proposed novel breathing variability indices can improve extubation failure prediction in invasively ventilated patients.


Asunto(s)
Respiración Artificial , Desconexión del Ventilador , Humanos , Desconexión del Ventilador/métodos , Extubación Traqueal , Estudios Prospectivos , Respiración
13.
J Digit Imaging ; 36(3): 1208-1215, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36650301

RESUMEN

Universal lesion detection (ULD) in computed tomography (CT) images is an important and challenging prerequisite for computer-aided diagnosis (CAD) to find abnormal tissue, such as tumors of lymph nodes, liver tumors, and lymphadenopathy. The key challenge is that lesions have a tiny size and high similarity with non-lesions, which can easily lead to high false positives. Specifically , non-lesions are nearby normal anatomy that include the bowel, vasculature, and mesentery, which decrease the conspicuity of small lesions since they are often hard to differentiate. In this study, we present a novel scale-attention module that enhances feature discrimination between lesion and non-lesion regions by utilizing the domain knowledge of radiologists to reduce false positives effectively. Inspired by the domain knowledge that radiologists tend to divide each CT image into multiple areas, then detect lesions in these smaller areas separately, a local axial scale-attention (LASA) module is proposed to re-weight each pixel in a feature map by aggregating local features from multiple scales adaptively. In addition, to keep the same weight, a combination of axial pixels in the height- and width-axes is designed, attached with position embedding. The model can be used in CNNs easily and flexibly. We test our method on the DeepLesion dataset. The sensitivities at 0.5, 1, 2, 4, 8, and 16 false positives (FPs) per image and average sensitivity at [0.5, 1, 2, 4] are calculated to evaluate the accuracy. The sensitivities are 78.30%, 84.96%, 89.86%, 93.14%, 95.36%, and 95.54% at 0.5, 1, 2, 4, 8, and 16 FPs per image; the average sensitivity is 86.56%, outperforming the former methods. The proposed method enhances feature discrimination between lesion and non-lesion regions by adding LASA modules. These encouraging results illustrate the potential advantage of exploiting the domain knowledge for lesion detection.


Asunto(s)
Diagnóstico por Computador , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Diagnóstico por Computador/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
14.
Anim Biotechnol ; 34(4): 1305-1313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34985384

RESUMEN

This study aimed to explore the genetic basis of muscle development in goats. The transcriptome dataset for differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs) of goat muscle at different developmental stages were obtained using RNA-Seq. A total of 447,806,481 and 587,559,465 clean reads in the longissimus dorsi muscle of Dazu black goats between 75d embryonic stage and 1d after birth were generated through Illumina paired-end sequencing, and their mapping rates were 89.82 and 90.99%, respectively. Moreover, 4517 DEGs and 648 DELs were identified, and 4784 lncRNA-mRNA targeting relationships were predicted. Gene function annotation results showed that 4101 DEGs were significantly enriched to 1098 GO terms, and 2014 DEGs were significantly enriched to 40 KEGG pathways, including many GO terms and pathways related to muscle development, such as cell differentiation and Wnt signaling pathway. Then, 10 DELs and 20 DEGs were randomly selected for RT-qPCR verification, and the agreement rate between the verification and RNA-Seq results was 90%, indicating the high reliability of the RNA-Seq data analysis. In conclusion, this study obtained several mRNAs and lncRNAs related to the muscle development of Dazu black goats and identified several targeted regulatory pairs of lncRNA-mRNA. This study may serve as a reference to understand the genetic basis and molecular mechanism of muscle development in goats.


Asunto(s)
ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Perfilación de la Expresión Génica/veterinaria , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Cabras/genética , ARN Mensajero/genética , Reproducibilidad de los Resultados , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Análisis de Secuencia de ARN/veterinaria , Desarrollo de Músculos/genética
15.
Langmuir ; 39(1): 20-27, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36528888

RESUMEN

Covalent organic frameworks (COFs) are promising crystalline porous materials with highly tunable structures and functionalities. In the last decade, COF films have been synthesized and used as multifunctional materials for a diverse range of separation applications. However, there are still challenges in the scaling-up preparation of COF films with benchmarked performance for precise molecular separations. Recently, research has turned its attention to preparing functional COF films with an appropriate aperture size/functionality, facile preparation process, and superior stability. In this Perspective, we outline the recent advances in designing and preparing functional COF films based on surface and interfacial chemistry. On top of that, current obstacles and opportunities in the scaling-up preparation of functional COF films and their industrial applications are proposed and discussed. This Perspective strives to inspire the development of functional COF films with tailored structures and functionalities and promote their practical applications in diverse molecular separation processes.

16.
Molecules ; 27(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500670

RESUMEN

The treatment of organic pollutants in wastewater is becoming a great challenge for social development. Herein, a novel contact-piezoelectric bi-catalysis of a ZnO@ PVDF composite membrane was prepared by electrospinning technology. The obtained ZnO@PVDF composite membranes is superior to the pure PVDF membrane in decomposing methyl orange (MO) under ultrasonication at room temperature, which is mainly attributed to the synergy effect of the contact-electro-catalysis of dielectric PVDF, as well as the piezoelectric catalysis of tetrapodal ZnO and the ß-phase of PVDF. The heterostructure of the piezoelectric-ZnO@dielectric-PVDF composite is beneficial in reducing the electron/hole pair recombination. As compared to the pure PVDF membrane, the catalytic degradation efficiency of the ZnO@PVDF composite membrane was improved by 444.23% under ultrasonication. Moreover, the reusability and stability of the composite membrane are comparable to those of the traditional powdered catalyst. This work offers a promising strategy for improving the pollutant degradation by combining contact-electro-catalysis with piezoelectric catalysis.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/química , Catálisis , Aguas Residuales
17.
Commun Biol ; 5(1): 1201, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352000

RESUMEN

Muscle stem cells (MuSCs) are essential for skeletal muscle development and regeneration, ensuring muscle integrity and normal function. The myogenic proliferation and differentiation of MuSCs are orchestrated by a cascade of transcription factors. In this study, we elucidate the specific role of transcription factor 12 (Tcf12) in muscle development and regeneration based on loss-of-function studies. Muscle-specific deletion of Tcf12 cause muscle weight loss owing to the reduction of myofiber size during development. Inducible deletion of Tcf12 specifically in adult MuSCs delayed muscle regeneration. The examination of MuSCs reveal that Tcf12 deletion resulted in cell-autonomous defects during myogenesis and Tcf12 is necessary for proper myogenic gene expression. Mechanistically, TCF12 and MYOD work together to stabilise chromatin conformation and sustain muscle cell fate commitment-related gene and chromatin architectural factor expressions. Altogether, our findings identify Tcf12 as a crucial regulator of MuSCs chromatin remodelling that regulates muscle cell determination and participates in skeletal muscle development and regeneration.


Asunto(s)
Cromatina , Proteína MioD , Proteína MioD/genética , Proteína MioD/metabolismo , Cromatina/genética , Cromatina/metabolismo , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genética , Mioblastos
18.
Molecules ; 27(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36364212

RESUMEN

In the past decade, selenocyclization has been extensively exploited for the preparation of a wide range of selenylated heterocycles with versatile activities. Previously, selenium electrophile-based and FeCl3-promoted methods were employed for the synthesis of selenylated benzoxazines. However, these methods are limited by starting material availability and low atomic economy, respectively. Inspired by the recent catalytic selenocyclization approaches based on distinctive pathways, we rationally constructed an efficient and greener double-redox catalytic system for the access to diverse selenylated benzoxazines. The coupling of I2/I- and Fe3+/Fe2+ catalytic redox cycles enables aerial O2 to act as the driving force to promote the selenocyclization. Control and test redox experiments confirmed the roles of each component in the catalytic system, and a PhSeI-based pathway is proposed for the selenocyclization process.


Asunto(s)
Oxígeno , Selenio , Oxígeno/metabolismo , Benzoxazinas , Oxidación-Reducción , Catálisis
19.
Cell Death Dis ; 13(9): 838, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175396

RESUMEN

In adult skeletal muscle, satellite cells are in a quiescent state, which is essential for the future activation of muscle homeostasis and regeneration. Multiple studies have investigated satellite cell proliferation and differentiation, but the molecular mechanisms that safeguard the quiescence of satellite cells remain largely unknown. In this study, we purposely activated dormant satellite cells by using various stimuli and captured the in vivo-preserved features from quiescence to activation transitions. We found that retinoic acid signaling was required for quiescence maintenance. Mechanistically, retinoic acid receptor gamma (RARγ) binds to and stimulates genes responsible for Akt dephosphorylation and subsequently inhibits overall protein translation initiation in satellite cells. Furthermore, the alleviation of retinoic acid signaling released the satellite cells from quiescence, but this restraint was lost in aged cells. Retinoic acid also preserves the quiescent state during satellite cell isolation, overcoming the cellular stress caused by the isolation process. We conclude that active retinoic acid signaling contributes to the maintenance of the quiescent state of satellite cells through regulation of the protein translation initiation process.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Tretinoina , Adulto , Anciano , División Celular , Rayos gamma , Humanos , Mioblastos , Tretinoina/farmacología
20.
Animals (Basel) ; 12(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883386

RESUMEN

This study aimed to identify the genes related to the body size of pigs by conducting genome-wide selection analysis (GWSA). We performed a GWSA scan on 50 pigs belonging to four small-bodied pig populations (Diannan small-eared pig, Bama Xiang pig, Wuzhishan pig, and Jeju black pig from South Korea) and 124 large-bodied pigs. We used the genetic parameters of the pairwise fixation index (FST) and π ratio (case/control) to screen candidate genome regions and genes related to body size. The results revealed 47,339,509 high-quality SNPs obtained from 174 individuals, while 280 interacting candidate regions were obtained from the top 1% signal windows of both parameters, along with 187 genes (e.g., ADCK4, AMDHD2, ASPN, ASS1, and ATP6V0C). The results of the candidate gene (CG) annotation showed that a series of CGs (e.g., MSTN, LTBP4, PDPK1, PKMYT1, ASS1, and STAT6) was enriched into the gene ontology terms. Moreover, molecular pathways, such as the PI3K-Akt, HIF-1, and AMPK signaling pathways, were verified to be related to body development. Overall, we identified a series of key genes that may be closely related to the body size of pigs, further elucidating the heredity basis of body shape determination in pigs and providing a theoretical reference for molecular breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA