Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125069, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241400

RESUMEN

The detection of ethanol-water solution concentration plays an important role in industries, medical care, food and other aspects, which has attracted much attention. In this paper, a 632.8 nm laser combined with the oblique-incidence reflectivity difference (OIRD) method was used to obtain a signal linearly related to the solution concentration and containing the information of the dielectric constant of the solution. Combined with a variety of deep learning algorithms, ethanol-water solutions with a volume concentration of 0-95 % are detected. Among them, the prediction accuracy of the MLP, CNN, LSTM, CNN + BiLSTM + Attention models were 93.65 %, 96.54 %, 97.12 %, 99.23 %, respectively. The experimental results indicate that the OIRD method can achieve rapid, non-destructive, accurate and reliable detection of ethanol-water solutions.

2.
Front Immunol ; 15: 1408347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267738

RESUMEN

Background: Coronary artery disease (CAD) imposes a significant global health burden, necessitating a deeper comprehension of its genetic foundations to uncover innovative therapeutic targets. Employing a comprehensive Mendelian randomization (MR) approach, we aimed to explore the genetic associations between lipid profiles, immune cell phenotypes, and CAD risk. Methods: Utilizing data from recent large-scale genome-wide association studies (GWAS), we scrutinized 179 lipid and 731 immune cell phenotypes to delineate their genetic contributions to CAD pathogenesis, including coronary artery calcification (CAC). Moreover, specific immune cell phenotypes were examined as potential mediators of the lipid-CAD/CAC causal pathway. Results: Among the 162 lipid species with qualified instrumental variables (IVs) included in the analysis, we identified 36 lipids that exhibit a genetic causal relationship with CAD, with 29 being risk factors and 7 serving as protective factors. Phosphatidylethanolamine (18:0_20:4) with 8 IVs (OR, 95% CI, P-value: 1.04, 1.02-1.06, 1.50E-04) met the Bonferroni-corrected significance threshold (0.05/162 = 3.09E-04). Notably, all 18 shared lipids were determined to be risk factors for both CAD and CAC, including 16 triacylglycerol traits (15 of which had ≥ 3 IVs), with (50:1) exhibiting the highest risk [OR (95% CI) in CAC: 1.428 (1.129-1.807); OR (95% CI) in CAD: 1.119 (1.046-1.198)], and 2 diacylglycerol traits. Furthermore, we identified HLA DR+ natural killer cells (IVs = 3) as nominally significant with lipids and as potential mediators in the causal pathway between diacylglycerol (16:1_18:1) or various triacylglycerols and CAD (mediated effect: 0.007 to 0.013). Conclusions: This study provides preliminary insights into the genetic correlations between lipid metabolism, immune cell dynamics, and CAD susceptibility, highlighting the potential involvement of natural killer cells in the lipid-CAD/CAC causal pathway and suggesting new targets for therapy. Further evidence is necessary to substantiate our findings.


Asunto(s)
Enfermedad de la Arteria Coronaria , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Asesinas Naturales , Análisis de la Aleatorización Mendeliana , Humanos , Enfermedad de la Arteria Coronaria/inmunología , Enfermedad de la Arteria Coronaria/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Calcificación Vascular/inmunología , Calcificación Vascular/genética , Lípidos , Metabolismo de los Lípidos/genética , Factores de Riesgo , Fenotipo , Polimorfismo de Nucleótido Simple
3.
bioRxiv ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39229045

RESUMEN

How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined via the use of multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1 occupied sites but may aid the formation of a subset of LDB1 anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1-phase, we establish a relationship between LDB1-dependent interactions in the context of TAD organization and gene activation. Lastly, Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. This establishes LDB1 as a direct driver of regulatory network inter-connectivity.

4.
Nat Genet ; 56(9): 1938-1952, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39210046

RESUMEN

Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.


Asunto(s)
Proteínas Cromosómicas no Histona , Cohesinas , Regiones Promotoras Genéticas , Transcripción Genética , Factor de Transcripción YY1 , Animales , Humanos , Ratones , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos , Células Eritroides/metabolismo , Células Eritroides/citología , Fase G1/genética , Regulación de la Expresión Génica , Mitosis/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética
5.
Front Pharmacol ; 15: 1447403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130641

RESUMEN

Severe COVID-19 cases often progress to life-threatening conditions such as acute respiratory distress syndrome (ARDS), sepsis, and multiple organ dysfunction syndrome (MODS). Gelsolin (GSN), an actin-binding protein with anti-inflammatory and immunomodulatory properties, is a promising therapeutic target for severe COVID-19. Plasma GSN levels are significantly decreased in critical illnesses, including COVID-19, correlating with dysregulated immune responses and poor outcomes. GSN supplementation may mitigate acute lung injury, ARDS, and sepsis, which share pathophysiological features with severe COVID-19, by scavenging actin, modulating cytokine production, enhancing macrophage phagocytosis, and stabilizing the alveolar-capillary barrier. Preliminary data indicate that recombinant human plasma GSN improves oxygenation and lung function in severe COVID-19 patients with ARDS. Although further research is needed to optimize GSN therapy, current evidence supports its potential to mitigate severe consequences of COVID-19 and improve patient outcomes. This review provides a comprehensive analysis of the biological characteristics, mechanisms, and therapeutic value of GSN in severe COVID-19.

6.
Phytomedicine ; 133: 155938, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163753

RESUMEN

BACKGROUND: Shengmai San Formula (SMS) is a traditional Chinese medicine (TCM) that has been used to treat wasting-thirst regarded as diabetes mellitus, which occurs disproportionately in obese patients. Therefore, we investigated whether SMS could be used to treat obesity, and explored possible mechanisms by which it might improve glucose and fat metabolism. METHODS: To investigate the effects of SMS on a high-fat diet (HFD)-induced obesity (DIO) model, we studied glucose metabolism via glucose tolerance testing (GTT) and insulin tolerance testing (ITT). Browning of white adipose tissue (WAT) was evaluated using H&E staining, along with browning-related gene and protein expression. Changes in bile acid (BA) levels in serum, liver, ileum, and inguinal white adipose tissue were detected by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In addition, antimicrobial mixture (ABX) and fecal microbial transplantation (FMT) experiments were used to verify the role of gut flora in the effects produced by SMS on HFD-induced obesity model. RESULTS: SMS ameliorated diet-induced dyslipidemia in a dose-dependent manner and reduced glucose intolerance and insulin resistance in DIO mice, helping to restore energy metabolism homeostasis. SMS significantly altered the structure of intestinal microbiome composition, decreasing the abundance of Lactobacillus carrying bile salt hydrolase (BSH) enzymes and thereby increasing the level of conjugated BAs in the blood, ileum, and iWAT. Increased TCA content promoted the secretion of Slit3 from M2 macrophages in iWAT, which activates the protein kinase A/calmodulin-dependent protein kinase II (PKA/CaMKII) signaling pathway in sympathetic neurons via the roundabouts receptor 1(ROBO1). This pathway promotes the synthesis and release of norepinephrine (NE), inducing cyclic adenosine monophosphate (cAMP) release in adipose tissue that activates the cyclic adenosine monophosphate/protein kinase A/phosphorylated hormone-sensitive lipase (cAMP/PKA/pHSL) pathway and enhances WAT browning. ABX treatment eliminated SMS effects on glucose and lipid metabolism in DIO mice, whereas glucose and lipid metabolism in obese mice improved following SMS-FMT and increased the level of serum bile acids. CONCLUSION: SMS affects intestinal flora and bile acid composition in vivo and increased TCA promotes M2 macrophage polarization and Slit3 release in adipose tissue. This induces NE release and increases WAT browning in obese mice, which may be a mechanism by which SMS could be used to treat obesity.


Asunto(s)
Ácidos y Sales Biliares , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Macrófagos , Ratones Endogámicos C57BL , Obesidad , Termogénesis , Animales , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Masculino , Ácidos y Sales Biliares/metabolismo , Termogénesis/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Modelos Animales de Enfermedad
7.
J Hazard Mater ; 476: 135243, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39029182

RESUMEN

Cadmium (Cd) pollution poses significant threats to soil organisms and human health by contaminating the food chain. This study aimed to assess the impact of various concentrations (50, 250, and 500 mg·kg-1) of zinc oxide nanoparticles (ZnO NPs), bulk ZnO, and ZnSO4 on morphological changes and toxic effects of Cd in the presence of earthworms and spinach. The results showed that Zn application markedly improved spinach growth parameters (such as fresh weight, plant height, root length, and root-specific surface area) and root morphology while significantly reducing Cd concentration and Cd bioconcentration factors (BCF-Cd) in spinach and earthworms, with ZnO NPs exhibiting the most pronounced effects. Earthworm, spinach root, and shoot Cd concentration decreased by 82.3 %, 77.0 %, and 75.6 %, respectively, compared to CK. Sequential-step extraction (BCR) analysis revealed a shift in soil Cd from stable to available forms, consistent with the available Cd (DTPA-Cd) results. All Zn treatments significantly reduced Cd accumulation, alleviated Cd-induced stress, and promoted spinach growth, with ZnO NPs demonstrating the highest Cd reduction and Zn bioaugmentation efficiencies compared to bulk ZnO and ZnSO4 at equivalent concentrations. Therefore, ZnO NPs offer a safer and more effective option for agricultural production and soil heavy metal pollution management than other Zn fertilizers.


Asunto(s)
Cadmio , Oligoquetos , Contaminantes del Suelo , Spinacia oleracea , Óxido de Zinc , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Cadmio/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Oligoquetos/efectos de los fármacos , Oligoquetos/metabolismo , Oligoquetos/crecimiento & desarrollo , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Biofortificación , Zinc/toxicidad , Sulfato de Zinc/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Suelo/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
8.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065007

RESUMEN

The oxidation of benzylic alcohols is an important transformation in modern organic synthesis. A plethora of photoredox protocols have been developed to achieve the aerobic oxidation of alcohols into carbonyls. Recently, several groups described that ultraviolet (UV) or purple light can initiate the aerobic oxidation of benzylic alcohols in the absence of an external catalyst, and depicted different mechanisms involving the photoinduction of •O2- as a critical reactive oxygen species (ROS). However, based on comprehensive mechanistic investigations, including control experiments, radical quenching experiments, EPR studies, UV-vis spectroscopy, kinetics studies, and density functional theory calculations (DFT), we elucidate here that HOO•, which is released via the H2O2 elimination of α-hydroxyl peroxyl radicals [ArCR(OH)OO•], serves as the real chain carrier for the autocatalytic photooxidation of benzylic alcohols. The mechanistic ambiguities depicted in the precedent literature are clarified, in terms of the crucial ROS and its evolution, the rate-limiting step, and the primary radical cascade. This work highlights the necessity of stricter mechanistic analyses on UV-driven oxidative reactions that involve aldehydes' (or ketones) generation.

9.
Clin Infect Dis ; 79(2): 524-533, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38913750

RESUMEN

BACKGROUND: The management of multidrug-resistant tuberculosis (MDR-TB) remains challenging. Treatment outcome is influenced by multiple factors; the specific roles of diabetes and glycemic control remain uncertain. This study aims to assess the impact of glycemic control on drug exposure, to investigate the association between drug exposure and treatment outcomes, and to identify clinically significant thresholds predictive of treatment outcome, among patients with diabetes. METHODS: This multicenter prospective cohort study involved patients with confirmed MDR-TB and diabetes. Drug exposure level was estimated by noncompartmental analysis. The minimum inhibitory concentrations (MICs) were determined for the individual Mycobacterium tuberculosis isolates. The influence of poor glycemic control (glycated hemoglobin ≥7%) on drug exposure and the associations between drug exposure and treatment outcome were evaluated by univariate and multivariate analysis. Classification and regression tree analysis was used to identify the drug exposure/susceptibility thresholds. RESULTS: Among the 131 diabetic participants, 43 (32.8%) exhibited poor glycemic control. Poor glycemic control was independently associated with decreased exposure to moxifloxacin, linezolid, bedaquiline, and cycloserine, but not clofazimine. Additionally, a higher ratio of drug exposure to susceptibility was found to be associated with a favorable MDR-TB treatment outcome. Thresholds predictive of 6-month culture conversion and favorable outcome were bedaquiline area under the concentration-time curve (AUC)/MIC ≥245 and moxifloxacin AUC/MIC ≥67, demonstrating predictive accuracy in patients, regardless of their glycemic control status. CONCLUSIONS: Glycemic control and optimal TB drug exposure are associated with improved treatment outcomes. This dual management strategy should be further validated in randomized controlled trials of patients with MDR-TB and diabetes.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Masculino , Femenino , Estudios Prospectivos , Antituberculosos/uso terapéutico , Persona de Mediana Edad , China/epidemiología , Adulto , Resultado del Tratamiento , Mycobacterium tuberculosis/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Moxifloxacino/uso terapéutico , Linezolid/uso terapéutico , Cicloserina/uso terapéutico , Diarilquinolinas/uso terapéutico , Anciano , Clofazimina/uso terapéutico , Hemoglobina Glucada/análisis
10.
Regen Biomater ; 11: rbae047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903560

RESUMEN

Development of piezoelectric biomaterials with high piezoelectric performance, while possessing excellent flexibility, biocompatibility, and biodegradability still remains a great challenge. Herein, a flexible, biocompatible and biodegradable piezoelectric ß-glycine-alginate-glycerol (Gly-Alg-Glycerol) film with excellent in vitro and in vivo sensing performance was developed. Remarkably, a single, monolithic ß-glycine spherulite, instead of more commonly observed multiple spherulites, was formed in alginate matrix, thereby resulting in outstanding piezoelectric property, including high piezoelectric constant (7.2 pC/N) and high piezoelectric sensitivity (1.97 mV/kPa). The Gly-Alg-Glycerol film exhibited superior flexibility, enabling complex shape-shifting, e.g. origami pigeon, 40% tensile strain, and repeated bending and folding deformation without fracture. In vitro, the flexible Gly-Alg-Glycerol film sensor could detect subtle pulse signal, sound wave and recognize shear stress applied from different directions. In addition, we have demonstrated that the Gly-Alg-Glycerol film sensor sealed by polylactic acid and beeswax could serve as an in vivo sensor to monitor physiological pressure signals such as heartbeat, respiration and muscle movement. Finally, the Gly-Alg-Glycerol film possessed good biocompatibility, supporting the attachment and proliferation of rat mesenchymal stromal cells, and biodegradability, thereby showing great potential as biodegradable piezoelectric biomaterials for biomedical sensing applications.

11.
AJNR Am J Neuroradiol ; 45(8): 1044-1052, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38871371

RESUMEN

BACKGROUND AND PURPOSE: Following endovascular thrombectomy in patients with large-vessel occlusion stroke, successful recanalization from 1 attempt, known as the first-pass effect, has correlated favorably with long-term outcomes. Pretreatment imaging may contain information that can be used to predict the first-pass effect. Recently, applications of machine learning models have shown promising results in predicting recanalization outcomes, albeit requiring manual segmentation. In this study, we sought to construct completely automated methods using deep learning to predict the first-pass effect from pretreatment CT and MR imaging. MATERIALS AND METHODS: Our models were developed and evaluated using a cohort of 326 patients who underwent endovascular thrombectomy at UCLA Ronald Reagan Medical Center from 2014 to 2021. We designed a hybrid transformer model with nonlocal and cross-attention modules to predict the first-pass effect on MR imaging and CT series. RESULTS: The proposed method achieved a mean 0.8506 (SD, 0.0712) for cross-validation receiver operating characteristic area under the curve (ROC-AUC) on MR imaging and 0.8719 (SD, 0.0831) for cross-validation ROC-AUC on CT. When evaluated on the prospective test sets, our proposed model achieved a mean ROC-AUC of 0.7967 (SD, 0.0335) with a mean sensitivity of 0.7286 (SD, 0.1849) and specificity of 0.8462 (SD, 0.1216) for MR imaging and a mean ROC-AUC of 0.8051 (SD, 0.0377) with a mean sensitivity of 0.8615 (SD, 0.1131) and specificity 0.7500 (SD, 0.1054) for CT, respectively, representing the first classification of the first-pass effect from MR imaging alone and the first automated first-pass effect classification method in CT. CONCLUSIONS: Results illustrate that both nonperfusion MR imaging and CT from admission contain signals that can predict a successful first-pass effect following endovascular thrombectomy using our deep learning methods without requiring time-intensive manual segmentation.


Asunto(s)
Aprendizaje Profundo , Accidente Cerebrovascular Isquémico , Imagen por Resonancia Magnética , Trombectomía , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Trombectomía/métodos , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Resultado del Tratamiento , Procedimientos Endovasculares/métodos
12.
Sci Total Environ ; 946: 174206, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38914321

RESUMEN

Microplastics and metal-based nanoparticles (NPs) are environmental pollutants that have attracted significant attention. However, there have been relatively few studies on the combined pollution of these substances in the soil-plant system. To investigate the environmental impact and interaction mechanisms of these two pollutants, a pot experiment was conducted to examine the effects of soil exposure on peanut growth. The experiment results revealed that polyethylene (PE) had a minimal effect on peanut growth, while CuO NPs significantly inhibited peanut growth. Peanut biomass decreased by over 50 % in all Cu treatments. The presence of PE significantly impacted the dissolution and absorption of CuO NPs. When 0.5 % PE was present, the dissolution and transformation of CuO NPs were limited, resulting in a total Cu concentration of 458 mg/kg. Conversely, when 5 % PE was present, the dissolution and transformation of CuO NPs were promoted, leading to a DTPA-Cu concentration of 141 mg/kg, the highest level observed. The distribution of trace elements in peanut stems also responded to the differences in Cu concentration. Both pollutants significantly disrupted soil bacteria, with CuO NPs having a more pronounced effect than PE. Throughout the entire growth cycle of peanuts, no chemical adsorption occurred between PE and CuO NPs, and CuO NPs had no significant impact on the aging rate of PE. In summary, this study provides insights into the environmental impact and transport mechanisms of composite pollution involving microplastics and metal-based nanoparticles in the soil-peanut system.


Asunto(s)
Arachis , Cobre , Nanopartículas del Metal , Microplásticos , Polietileno , Contaminantes del Suelo , Cobre/toxicidad , Arachis/efectos de los fármacos , Nanopartículas del Metal/toxicidad
13.
Nat Genet ; 56(6): 1213-1224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802567

RESUMEN

During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1ß and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Heterocromatina , Mitosis , Complejos Multiproteicos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mitosis/genética , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Interfase/genética , Cromosomas/genética , Homólogo de la Proteína Chromobox 5 , Cromatina/metabolismo , Cromatina/genética
14.
J Pharm Biomed Anal ; 246: 116236, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772203

RESUMEN

As the adulteration of dietary supplements with synthetic drugs remains a prevalent issue, the inclusion of anti-obesity agents may pose health risks, potentially leading to central nervous system or cardiovascular diseases. However, surveillance studies on the use of anti-obesity agents by the Chinese population are limited. This study aims to establish an efficient and rapid hair pretreatment method using dispersive liquid-liquid microextraction (DLLME) combined with high-speed grinding and develop a sensitive and accurate analytical method employing ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for detecting 13 potential anti-obesity agents in hair samples. Herein, hair samples were washed sequentially with 0.1% sodium dodecyl sulfate (SDS), water and acetone, and then ground at high speed using 1 mL of an extraction solution (internal standard solution-n-butanol-1.2 mol/L Na2HPO4, pH10.0, 100:400:500, v/v/v for procaterol; internal standard solution-ethyl acetate-1.2 mol/L Na2HPO4, pH8.0, 100:300:600, v/v/v for other 12 anti-obesity agents) while simultaneously performing DLLME. The developed method successfully detected 13 anti-obesity agents within 11 min, including bambuterol, clenbuterol, ractopamine, clorprenaline, formoterol, salbutamol, terbutaline, procaterol, phentermine, bupropion, sibutramine, desmethyl sibutramine, and N,N-didesmethyl sibutramine, which improved the screening efficiency. The calibration curves exhibited good linearity of 0.025-5 ng/mg, achieving correlation coefficients of r ≥ 0.99. The lower limits of quantification (LLOQs) for the analytes were 0.025 ng/mg, demonstrating acceptable levels of accuracy and precision. Recovery rates ranged between 73.30% and 107.47% across the three concentrations of 0.075, 0.375, and 3.75 ng/mg. The validated method was successfully applied to 369 real cases and detected six analytes, including bambuterol, salbutamol, terbutaline, sibutramine, desmethyl sibutramine, and N,N-didesmethyl sibutramine. This method offers several advantages, including simple pretreatment, high extraction efficiency, rapid extraction, solvent economy, and pollution mitigation, making it highly suitable for large-scale surveillance of usage of added anti-obesity agents.


Asunto(s)
Fármacos Antiobesidad , Cabello , Microextracción en Fase Líquida , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Fármacos Antiobesidad/análisis , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Cabello/química , Humanos , Límite de Detección , Reproducibilidad de los Resultados
15.
Phytomedicine ; 129: 155625, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692077

RESUMEN

BACKGROUND: Shengmai Formula (SMF), a classic formula in treating Qi-Yin deficiency, is composed of Ginseng Radix et Rhizoma Rubra (GRR), Ophiopogon Radix (OR), and Schisandra chinensis Fructus (SC), and has been developed into various dosage forms including Shengmai Yin Oral Liquid (SMY), Shengmai Capsules (SMC), and Shengmai Injection (SMI). The pharmacological effects of compound Chinese medicine are attributed to the integration of multiple components. Yet the quality criteria of SMF are limited to monitoring schisandrol A or ginsenosides Rg1 and Re, but none for OR. Since the complexity of raw materials and preparations, establishing a economical and unified method for SMF is challenging. It is urgent to simultaneously quantify multiple components with different structures using a universal method for quality control of SMF. Charged aerosol detector (CAD) overcame the above shortcomings owing to its characteristics of high responsiveness, nondiscrimination, and low cost. PURPOSE: We aimed to establish a versatile analysis strategy using HPLC-CAD for simultaneously quantifying the structurally diverse markers in quality control of SMF from raw materials to preparations. METHOD: By optimizing the column, mobile phase, column temperature, flow rate, and CAD parameters, a HPLC-CAD method that integrated multi-component characterization, authenticity identification, transfer information of raw materials and quantitative determination of Shengmai preparations was established. RESULTS: In total 50 components from SMF were characterized (28 in GRR, 13 in SC, and 9 in OR). The differences in raw materials between species of SC and Schisandrae sphenantherae Fructus (SS), processing methods of Ginseng Radix (GR) and GRR, and locations of OR from Sichuan (ORS) and Zhejiang (ORZ) were compared. Fourteen components in 19 batches of SMY, SMC and SMI from different manufacturers were quantified, including 11 ginsenosides and 3 lignans. The multivariate statistical analysis results further suggested that Rb1, Rg1 and Ro were the main differences among Shengmai preparations. CONCLUSION: The established versatile analysis strategy based on HPLC-CAD was proven sensitive, simple, convenient, overcoming the discriminatory effect of UV detector, revealing the composition and transfer information of SMF and applicable for authentication of the ingredient herbs and improving the quality of Shengmai preparations.


Asunto(s)
Combinación de Medicamentos , Medicamentos Herbarios Chinos , Control de Calidad , Schisandra , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/normas , Schisandra/química , Ginsenósidos/análisis , Ginsenósidos/química , Lignanos/análisis , Ciclooctanos/análisis , Ciclooctanos/química , Panax/química
16.
Proc Natl Acad Sci U S A ; 121(23): e2318843121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805277

RESUMEN

The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Glioma/genética , Glioma/cirugía , Glioma/patología , Isocitrato Deshidrogenasa/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectrometría de Masas en Tándem/métodos , Glutaratos/metabolismo , Espectrometría de Masas/métodos , Ácido Glutámico/metabolismo , Ácido Glutámico/genética
17.
J Ethnopharmacol ; 331: 118331, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38734392

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng saponins (PNS), as the main active component of Panax notoginseng, shows broad pharmacological effects but with low oral bioavailability. Borneol (BO) is commonly used as an adjuvant drug in the field of traditional Chinese medicine, which has been proven to facilitate the absorption of ginsenosides such as Rg1 and Rb1 in vivo. The presence of chiral carbons has resulted in three optical isomers of BO commercially available in the market, all of which are documented by national standards. AIM OF THE STUDY: This study aimed to investigate the role of BO in promoting the oral absorption of PNS from the perspective of optical configuration and compatibility ratios. MATERIALS AND METHODS: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UPLC-QTRAP-MS/MS) method was validated and applied to determine the concentrations of five main saponins in PNS in rat plasma. The kinetic characteristics of PNS were compared when co-administered with BO based on optical isomerism and different compatibility ratios. RESULTS: The results showed that BO promoted the exposure of PNS in rats. Three forms of BO, namely d-borneol (DB), l-borneol (LB), and synthetic borneol (SB), exhibited different promotion strengths. SB elevated PNS exposure in rats more than DB or LB. It is also interesting to note that under different compatibility ratios, SB can exert a strong promoting effect only when PNS and BO were combined in a 1:1 ratio (PNS 75 mg/kg; BO 75 mg/kg). As a pharmacokinetic booster, the dosage of BO is worthy of consideration and should follow the traditional medication principles of Chinese medicine. CONCLUSIONS: This study shed new light on the compatible use of PNS and BO from the perspective of "configuration-dose-influence" of BO. The results provide important basis for the clinical application and selection of BO.


Asunto(s)
Canfanos , Panax notoginseng , Ratas Sprague-Dawley , Saponinas , Espectrometría de Masas en Tándem , Animales , Panax notoginseng/química , Canfanos/farmacocinética , Saponinas/farmacocinética , Saponinas/química , Saponinas/administración & dosificación , Saponinas/sangre , Masculino , Administración Oral , Ratas , Cromatografía Líquida de Alta Presión , Adyuvantes Farmacéuticos/química , Adyuvantes Farmacéuticos/farmacocinética , Disponibilidad Biológica
18.
Front Cell Dev Biol ; 12: 1405546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745862

RESUMEN

Silent information regulator two homolog 1 (SIRT1), an NAD + -dependent histone deacetylase, plays a pivotal regulatory role in a myriad of physiological processes. A growing body of evidence suggests that SIRT1 can exert protective effects in metabolic disorders and neurodegenerative diseases by inhibiting endoplasmic reticulum (ER) stress and the nuclear factor-κB (NF-κB) inflammatory signaling pathway. This review systematically elucidates the molecular mechanisms and biological significance of SIRT1 in regulating ER stress and the NF-κB pathway. On one hand, SIRT1 can deacetylate key molecules in the ER stress pathway, such as glucose-regulated protein 78 (GRP78), X-box binding protein 1 (XBP1), PKR-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6), thereby alleviating ER stress. On the other hand, SIRT1 can directly or indirectly remove the acetylation modification of the NF-κB p65 subunit, inhibiting its transcriptional activity and thus attenuating inflammatory responses. Through these mechanisms, SIRT1 can ameliorate insulin resistance in metabolic diseases, exert cardioprotective effects in ischemia-reperfusion injury, and reduce neuronal damage in neurodegenerative diseases. However, it is important to note that while these findings are promising, the complex nature of the biological systems involved warrants further investigation to fully unravel the intricacies of SIRT1's regulatory mechanisms. Nevertheless, understanding the regulatory mechanisms of SIRT1 on ER stress and the NF-κB pathway is of great significance for expanding our knowledge of the pathogenesis of related diseases and exploring new preventive and therapeutic strategies targeting SIRT1.

19.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676146

RESUMEN

Temperature fluctuations affect the performance of high-precision gravitational reference sensors. Due to the limited space and the complex interrelations among sensors, it is not feasible to directly measure the temperatures of sensor heads using temperature sensors. Hence, a high-accuracy interpolation method is essential for reconstructing the surface temperature of sensor heads. In this study, we utilized XGBoost-LSTM for sensor head temperature reconstruction, and we analyzed the performance of this method under two simulation scenarios: ground-based and on-orbit. The findings demonstrate that our method achieves a precision that is two orders of magnitude higher than that of conventional interpolation methods and one order of magnitude higher than that of a BP neural network. Additionally, it exhibits remarkable stability and robustness. The reconstruction accuracy of this method meets the requirements for the key payload temperature control precision specified by the Taiji Program, providing data support for subsequent tasks in thermal noise modeling and subtraction.

20.
JIMD Rep ; 65(2): 116-123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444580

RESUMEN

Mucopolysaccharidoses (MPS) screening is tedious and still performed by analysis of total glycosaminoglycans (GAG) using 1,9-dimethylmethylene blue (DMB) photometric assay, although false positive and negative tests have been reported. Analysis of differentiated GAGs have been pursued classically by gel electrophoresis or more recently by quantitative LC-MS assays. Secondary elevations of GAGs have been reported in urinary tract infections (UTI). In this manuscript, we describe the diagnostic accuracy of urinary GAG measurements by LC-MS for MPS typing in 68 untreated MPS and mucolipidosis (ML) patients, 183 controls and 153 UTI samples. We report age-dependent reference values and cut-offs for chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS) and keratan sulfate (KS) and specific GAG ratios. The use of HS/DS ratio in combination to GAG concentrations normalized to creatinine improves the diagnostic accuracy in MPS type I, II, VI and VII. In total 15 samples classified to the wrong MPS type could be correctly assigned using HS/DS ratio. Increased KS/HS ratio in addition to increased KS improves discrimination of MPS type IV by excluding false positives. Some samples of UTI patients showed elevation of specific GAGs, mainly CS, KS and KS/HS ratio and could be misclassified as MPS type IV. Finally, DMB photometric assay performed in MPS and ML samples reveal four false negative tests (sensitivity of 94%). In conclusion, specific GAG ratios in complement to quantitative GAG values obtained by LC-MS enhance discrimination of MPS types. Exclusion of patients with UTI improve diagnostic accuracy in MPS IV but not in other types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA