Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Medicine (Baltimore) ; 103(24): e38384, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875374

RESUMEN

It aims to study the efficacy and safety of low-concentration Atropine combined with orthokeratology (OK) lens in delaying juvenile myopia. This is a prospective study, 172 adolescents aged 8 to 12 years who were admitted to the diopter department of Hengshui People Hospital from April 2021 to May 2022 were selected. According to the equivalent spherical diopter measured at the time of initial diagnosis, myopic patients were randomly divided into low myopia group (group A) and moderate myopia group (group B). At the same time, according to the different treatment methods, the patients were divided into the group wearing frame glasses alone (group c), the group wearing frame glasses with low-concentration Atropine (group d), the group wearing corneal shaping glasses alone at night (group e), and the group wearing corneal shaping glasses at night with low-concentration Atropine (group f). The control effect of myopia development and axial elongation in group f was better than that in groups d and e (P < .05). The effect of controlling myopia development and axial elongation in group f is with P > .05. The probability of postoperative adverse reactions in group f was lower and lower than that in the other groups. Low-concentration atropine combined with OK lens could effectively delay the development of juvenile myopia, and had a high safety. Low-concentration of Atropine would not have a significant impact on the basic tear secretion and tear film stability. Nightwear of OK lens also had no significant impact, but it would significantly reduce the tear film rupture time in the first 3 months, and at the same time, the tear film rupture time would be the same after 6 months as before treatment.


Asunto(s)
Atropina , Miopía , Procedimientos de Ortoqueratología , Humanos , Atropina/administración & dosificación , Atropina/uso terapéutico , Niño , Miopía/terapia , Masculino , Femenino , Procedimientos de Ortoqueratología/métodos , Estudios Prospectivos , Midriáticos/administración & dosificación , Midriáticos/uso terapéutico , Resultado del Tratamiento , Soluciones Oftálmicas/administración & dosificación , Lentes de Contacto
2.
J Hazard Mater ; 473: 134633, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772109

RESUMEN

Ion-adsorbed rare earth minerals are rich in medium and heavy rare earth (RE), which are important strategic resources. In this article, a novel approach for the extraction of RE from ion adsorbed minerals was developed. Through a comprehensive assessment of their extraction and separation performance, the hydrophobic deep eutectic solvents (HDES) with a composition of trioctylphosphine oxide (TOPO): dodecanol (LA): 2-thiophenoyltrifluoroacetone (HTTA) = 1:1:1 was determined as the optimal configuration. Under optimized conditions, only RE were extracted by the HDES, while Al, Ca, Mg were not extracted at all. The HDES based extraction obviated the need for diluent such as kerosene, eliminating the generation of impurity removal residues. The RE in the stripping solution could be successfully enriched by saponified lauric acid, achieving an impressive precipitation rate of 99.7%. The RE precipitate underwent further enrichment, resulting in a RE concentration of 176 g/L (REO = 210 g/L). Unlike industrial precipitants such as oxalic acid and ammonium bicarbonate, lauric acid can be effectively recycled, thereby avoiding a large amount of wastewater and carbon dioxide emissions. The obtained RE solution product exhibits high yield and purity, this study provides an eco-friendly and high-yield approach for extracting RE.

3.
Small ; 20(19): e2308453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38221691

RESUMEN

Despite great efforts on economical and functionalized carbon materials, their scalable applications are still restricted by the unsatisfying energy storage capability under high-rate conditions. Herein, theoretical and methodological insights for surface-to-bulk engineering of multi-heteroatom-doped hollow porous carbon (HDPC), with subtly designed Zn(OH)F nanoarrays as the template are presented. This fine-tuned HDPC delivers an ultrahigh-rate energy storage capability even at a scan rate of 3000 mV s-1 (fully charged within 0.34 s). It preserves a superior capacitance of 234 F g-1 at a super-large current density of 100 A g-1 and showcases an ultralong cycling life without capacitance decay after 50 000 cycles. Through dynamic and theoretical analysis, the key role of in situ surface-modified heteroatoms and defects in decreasing the K+-adsorption/diffusion energy barrier is clarified, which cooperates with the porous conductive highways toward enhanced surface-to-bulk activity and kinetics. In situ Raman aids in visualizing the reversibly dynamic adsorption/releasing of the electrolyte ions on the tailored carbon structure during the charge/discharge process. The potential of the design concept is further evidenced by the enhanced performances in water-in-salt electrolytes. This surface-to-bulk nanotechnology opens the path for developing high-performance energy materials to better meet the practical requirements in the future.

4.
Small ; 20(2): e2304998, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670222

RESUMEN

Perturbation of the copper (Cu) active site by electron manipulation is a crucial factor in determining the activity and selectivity of electrochemical carbon dioxide (CO2 ) reduction reaction (e-CO2 RR) in Cu-based molecular catalysts. However, much ambiguity is present concerning their electronic structure-function relationships. Here, three molecular Cu-based porphyrin catalysts with different electron densities at the Cu active site, Cu tetrakis(4-methoxyphenyl)porphyrin (Cu─T(OMe)PP), Cu tetraphenylporphyrin (Cu─THPP), and Cu tetrakis(4-bromophenyl)porphyrin (Cu─TBrPP), are prepared. Although all three catalysts exhibit e-CO2 RR activity and the same reaction pathway, their performance is significantly affected by the electronic structure of the Cu site. Theoretical and experimental investigations verify that the conjugated effect of ─OCH3 and ─Br groups lowers the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbitals (LUMO) gap of Cu─T(OMe)PP and Cu─TBrPP, promoting faster electron transfer between Cu and CO2 , thereby improving their e-CO2 RR activity. Moreover, the high inductive effect of ─Br group reduces the electron density of Cu active site of Cu─TBrPP, facilitating the hydrolysis of the bound H2 O and thus creating a preferable local microenvironment, further enhancing the catalytic performance. This work provides new insights into the relationships between the substituent group characteristics with e-CO2 RR performance and is highly instructive for the design of efficient Cu-based e-CO2 RR electrocatalysts.

5.
Small ; : e2308147, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150664

RESUMEN

Despite great efforts on economical and functionalized carbon materials, their scalable applications are still restricted by the unsatisfying energy storage capability under high-rate conditions. Herein, theoretical and methodological insights for surface-to-bulk engineering of multi-heteroatom-doped hollow porous carbon (HDPC) is presented, with subtly designed Zn(OH)F nanoarrays as the template. This fine-tuned HDPC delivers an ultrahigh-rate energy storage capability even at a scan rate of 3000 mV s-1 (fully charged within 0.34 s). It preserves a superior capacitance of 234 F g-1 at a super-large current density of 100 A g-1 and showcases an ultralong cycling life without capacitance decay after 50 000 cycles. Through dynamic and theoretical analysis, the key role of in situ surface-modified heteroatoms and defects in decreasing the K+ -adsorption/diffusion energy barrier is clarified, which cooperates with the porous conductive highways toward enhanced surface-to-bulk activity and kinetics. In situ Raman further aids in visualizing the reversibly dynamic adsorption/releasing of the electrolyte ions on the tailored carbon structure during the charge/discharge process. The potential of the design concept is further evidenced by the enhanced performances in water-in-salt electrolytes. This surface-to-bulk nanotechnology opens the path for developing high-performance energy materials to better meet the practical requirements in future.

6.
Angew Chem Int Ed Engl ; 62(49): e202314121, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37875780

RESUMEN

Constructing Cu single-atoms (SAs) catalysts is considered as one of the most effective strategies to enhance the performance of electrochemical reduction of CO2 (e-CO2 RR) towards CH4 , however there are challenges with activity, selectivity, and a cumbersome fabrication process. Herein, by virtue of the meta-position structure of alkynyl in 1,3,5-triethynylbenzene and the interaction between Cu and -C≡C-, a Cu SAs electrocatalyst (Cu-SAs/HGDY), containing low-coordination Cu-C2 active sites, was synthesized through a simple and efficient one-step method. Notably, this represents the first achievement of preparing Cu SAs catalysts with Cu-C2 coordination structure, which exhibited high CO2 -to-CH4 selectivity (72.1 %) with a high CH4 partial current density of 230.7 mA cm-2 , and a turnover frequency as high as 2756 h-1 , dramatically outperforming currently reported catalysts. Comprehensive experiments and calculations verified the low-coordination Cu-C2 structure not only endowed the Cu SAs center more positive electricity but also promoted the formation of H•, which contributed to the outstanding e-CO2 RR to CH4 electrocatalytic performance of Cu-SAs/HGDY. Our work provides a novel H⋅-transferring mechanism for e-CO2 RR to CH4 and offers a protocol for the preparation of two-coordinated Cu SAs catalysts.

7.
PeerJ ; 11: e15013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37070095

RESUMEN

Background: Approximately 10-20% of patients diagnosed with prostate cancer (PCa) evolve into castration-resistant prostate cancer (CRPC), while nearly 90% of patients with metastatic CRPC (mCRPC) exhibit osseous metastases (BM). These BM are intimately correlated with the stability of the tumour microenvironment. Purpose: This study aspires to uncover the metabolism-related genes and the underlying mechanisms responsible for bone metastatic prostate cancer (BMPCa). Methods: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets of PCa and BM were analyzed through R Studio software to identify differentially expressed genes (DEGs). The DEGs underwent functional enrichment via Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), with key factors screened by a random forest utilized to establish a prognostic model for PCa. The study explored the relationship between DEGs and the stability of the immune microenvironment. The action and specificity of CRISP3 in PCa was validated through western blot analysis, CCK-8 assay, scratch assay, and cellular assay. Results: The screening of GEO and TCGA datasets resulted in the identification of 199 co-differential genes. Three DEGs, including DES, HBB, and SLPI, were selected by random forest classification model and cox regression model. Immuno-infiltration analysis disclosed that a higher infiltration of naïve B cells and resting CD4 memory T cells occurred in the high-expression group of DES, whereas infiltration of resting M1 macrophages and NK cells was greater in the low-expression group of DES. A significant infiltration of neutrophils was observed in the high-expression group of HBB, while greater infiltration of gamma delta T cells and M1 macrophages was noted in the low-expression group of HBB. Resting dendritic cells, CD8 T cells, and resting T regulatory cells (Tregs) infiltrated significantly in the high-expression group of SLPI, while only resting mast cells infiltrated significantly in the low-expression group of SLPI. CRISP3 was established as a critical gene in BMPCa linked to DES expression. Targeting CRISP3, d-glucopyranose may impact tumour prognosis. During the mechanistic experiments, it was established that CRISP3 can advance the proliferation and metastatic potential of PCa by advancing epithelial-to-mesenchymal transition (EMT). Conclusion: By modulating lipid metabolism and maintaining immunological and microenvironmental balance, DES, HBB, and SLPI suppress prostate cancer cell growth. The presence of DES-associated CRISP3 is a harbinger of unfavorable outcomes in prostate cancer and may escalate tumor proliferation and metastatic capabilities by inducing epithelial-mesenchymal transition.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Próstata , Neoplasias Óseas/genética , Metabolismo de los Lípidos , Linfocitos B , Microambiente Tumoral/genética
8.
Small Methods ; 6(11): e2200949, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36202612

RESUMEN

Diabetic wound healing still faces a dilemma because of the hostile hyperglycemic, oxidative, and easily-infected wound microenvironment. In addition, advanced glycation end products (AGEs) further impede wound repair by altering the immunological balance. Herein, ceria nanorods with distinctive antiglycative and excellent antioxidative capacities are innovatively introduced into a self-healing and erasable hydrogel, which could reshape the wound microenvironment by expediting hemostasis, inhibiting infection, reducing AGEs, and continuously depleting reactive oxygen species. The remitted oxidative stress and glycosylation synergistically regulate inflammatory responses, and promote revascularization and extracellular matrix deposition, resulting in accelerated diabetic wound repair. This study provides a highly efficient strategy for constructing nanoenzyme-reinforced antiglycative hydrogel that regulates every wound healing stage for diabetic wound management.


Asunto(s)
Diabetes Mellitus , Infección de Heridas , Humanos , Hidrogeles/uso terapéutico , Antioxidantes/farmacología , Cicatrización de Heridas/fisiología , Infección de Heridas/tratamiento farmacológico
9.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 201-212, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35988180

RESUMEN

Branch Retinal Vein Occlusion (BRVO) is the second chronic branch retinal vascular disease that causes abnormal vision loss after acute branch retinal disease in type 2 diabetes. There is no scientific conclusion about its specific pathogenic mechanism at present. Most clinical scholars generally support the theory that the partial human anatomical structure and various systemic risk psychological factors cause insufficient oxygen supply and hemostasis in the local branch retinal arteries. The research results of this article aim to reconstruct a non-nanocell-targeted thrombolytic drug delivery system without modification of rtPA without polyethylene glycol-methyl polycaprolactone and to re-evaluate its thrombus targeting and dissolution. The effect and safety of thrombus provide a new strategy for realizing combined treatment of thrombus. It is a study on the targeting of rtPA-NP to thrombus and its thrombolytic properties. HPLC method was used to detect the binding of fibrin clot prepared in vitro with coumarin-6 labeled NP and rtPA-NP; immunofluorescence technique was used to observe the location of nanomedicine and fibrin clot in branch retinal vein occlusion model Condition. The rtPA-NP drug delivery system constructed in this study not only retains the activity of rtPA and good thrombus targeting but also significantly prolongs its half-life and simplifies the way of administration. The therapeutic efficiency of rtPA-NP thrombus targeted administration on branch retinal vein occlusion reached 85.64%. The successful construction of the rtPA-NP thrombus targeted drug delivery system provides a new way for thrombosis treatment and lays the foundation for the future combination of anticoagulants and vascular protection drugs to achieve the combined treatment of thrombosis and the development of safe and efficient thrombolytic drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nanopartículas , Oclusión de la Vena Retiniana , Trombosis , Activador de Tejido Plasminógeno , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fibrina/metabolismo , Fibrina/uso terapéutico , Fibrinolíticos/química , Fibrinolíticos/uso terapéutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Oclusión de la Vena Retiniana/tratamiento farmacológico , Terapia Trombolítica , Trombosis/patología , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/uso terapéutico
10.
Small ; 18(24): e2201306, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35570703

RESUMEN

The intrinsic sluggish kinetics of the oxygen evolution reaction (OER) limit the improvement of hydrogen evolution reaction (HER) performance, and substituting the anodic oxidation of biomass materials is an alternative approach, given its lower oxidation potential and higher added value compared to those of OER. In this study, a Ni3 S2 -MoS2 nanoheterojunction catalyst with strong electronic interactions is prepared. It exhibits high efficiency for both the HER and the electrooxidation of 5-hydroxymethylfurfural (HMF). In a two-electrode cell with Ni3 S2 -MoS2 serving as both the anode and cathode, the potential is only 1.44 V at a current density of 10 mA cm-2 , which is much lower than that of pure water splitting. Density functional theory calculations confirm that the strong chemisorption of H and HMF at the interface leads to outstanding electrocatalytic activity. The findings not only provide a strategy for developing efficient electrocatalysts, but also provide an approach for the continuous production of high value-added products and H2 .


Asunto(s)
Hidrógeno , Molibdeno , Níquel/química , Aerosoles , Biomasa , Catálisis , Oxígeno , Agua
11.
Natl Sci Rev ; 9(4): nwac037, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35419207

RESUMEN

Cartilage injuries are often devastating and most cannot be cured because of the intrinsically low regenerative capacity of cartilage tissues. Although stem-cell therapy has shown enormous potential for cartilage repair, the therapeutic outcome has been restricted by low survival rates and poor chondrocyte differentiation in vivo. Here, we report an injectable hybrid inorganic (IHI) nanoscaffold that facilitates fast assembly, enhances survival and regulates chondrogenic differentiation of stem cells. IHI nanoscaffolds that strongly bind to extracellular matrix (ECM) proteins assemble stem cells through synergistic 3D cell-cell and cell-matrix interactions, creating a favorable physical microenvironment for stem-cell survival and differentiation in vitro and in vivo. Additionally, chondrogenic factors can be loaded into nanoscaffolds with a high capacity, which allows deep, homogenous drug delivery into assembled 3D stem-cell-derived tissues for effective control over the soluble microenvironment of stem cells. The developed IHI nanoscaffolds that assemble with stem cells are injectable. They also scavenge reactive oxygen species and timely biodegrade for proper integration into injured cartilage tissues. Implantation of stem-cell-assembled IHI nanoscaffolds into injured cartilage results in accelerated tissue regeneration and functional recovery. By establishing our IHI nanoscaffold-templated 3D stem-cell assembly method, we provide a promising approach to better overcoming the inhibitory microenvironment associated with cartilage injuries and to advance current stem-cell-based tissue engineering.

12.
J Environ Manage ; 310: 114743, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217448

RESUMEN

Due to the complex composition of ion-adsorbed type rare earth ore leaching solution, there are challenges in the process of rare earth (RE) separation, such as large RE loss rate, low product purity, radioactive residue and so on. In this article, 8-hydroxyquinoline modified silica gel (HQ-SiO2) and 2,2'-(1,4-phenylenebis(oxy)) dioctanoic acid (PPBOA) were used to form an efficient process for impurities removal and RE enrichment. Solid phase extraction successfully intercepted 96.7% of the radioactive element thorium. The concentration of aluminium was reduced to 2.14 ppm by frank chromatography. Rare earth elements were enriched from 336.35 mg/L to 237.75 g/L by extraction-precipitation, that is, the enrichment multiple reached more than 700 and the proportion of RE was increased from 21.85% to 96.62%. The loss rate of RE was controlled below 1.59%. Moreover, the magnesium salt leaching solution could be recycled for the leaching of RE ores. Although some liquid waste need to be treated in the processes of HQ-SiO2 production and regeneration, the integrated process helps to decrease volatile organic solvent, acid-base consumption, wastewater and waste residue. It is an environment-friendly RE enrichment and impurity removal process, which shows application potential in the production field of ion-adsorbed type rare earth mineral products.


Asunto(s)
Magnesio , Metales de Tierras Raras , Metales de Tierras Raras/análisis , Minerales , Reciclaje/métodos , Dióxido de Silicio
13.
Macromol Rapid Commun ; 43(4): e2100599, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850991

RESUMEN

Mechanically robust superhydrophobic coatings have been extensively reported using chemically susceptible inorganic fillers like slica, titanium dioxide, and zinc oxide for constructing micro-nano structures. Organic particles are good candidates for improving chemical resistance, whereas the synthesis of organic particles with well-defined and stable micro-nano structures remains exclusive. Here, an all-organic, cross-linked superhydrophobic coating comprising raspberry-like fluorinated micro particles (RLFMP) and fluorinated polyurethane (FPU) is prepared via thiol-click reaction. Benefiting from the robust micro-nano structure of RLFMP and the excellent flexibility of FPU, the coating can maintain superhydrophobicity after severe alkali corrosion or mechanical damage, while the superhydrophobicity can be repaired readily by the fast recovery of micro-nano roughness and migration of branched fluoroalkyl chains to the coating surface. This design strategy is expected to provide a good application of thiol-click chemistry.


Asunto(s)
Poliuretanos , Rubus , Corrosión , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos de Sulfhidrilo
14.
J Environ Manage ; 304: 114164, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34864416

RESUMEN

A novel method for the selective removal and recovery of copper ion from copper-containing wastewater by extraction-precipitation with p-tert-octyl phenoxy acetic acid as a precipitant is presented. The morphology, thermal stability and solubility of POAA were synthesized and characterized. Then the application of POAA to precipitate copper from simulated copper-containing wastewater was studied. The effects of some factors (i.e., time, pH, temperature, dosage of precipitant) on copper precipitation efficiency (P%) and water solubility of POAA were discussed. The extraction-precipitation mechanism of POAA and Cu2+ was investigated by slope analysis combined with SEM, EDS, XPS and IR spectra. The concentration and purity of copper from industrial wastewater increased from 100.2 mg/L to 27,916 mg/L and 13.71%-93.01% respectively, treating by the proposed extraction-precipitation. Moreover, POAA revealed good stability in the recycling processes. Extraction-precipitation strategy is simple, efficient and sustainable, which can effectively reduce the volume of sludge in the process of wastewater treatment and produce copper concentrated solution with industrial value, which has revealed application potential for the clean production of copper smelting enterprises.


Asunto(s)
Aguas Residuales , Purificación del Agua , Ácido Acético , Cobre/análisis , Concentración de Iones de Hidrógeno
15.
Colloids Surf B Biointerfaces ; 205: 111878, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34058693

RESUMEN

CeO2 nanoenzyme possesses multiple enzyme-mimicking activities and excellent biocompatibility. However, its weak peroxidase (POD)-mimicking property in the tumor microenvironment (TME) hinders its further tumor therapy application. To enhance CeO2 nanoenzyme's POD activity and overcome limitations of single therapeutic modality, a novel antitumor controlled drug release system (CCCs NPs) was designed using Cu doped cerium oxide nanoparticles (Cu-CeO2 NPs) loaded with clinical anti-cancer drug doxorubicin (DOX) as the core and the breast cancer cell membrane as the outer shell. Cu doping endowed CeO2 NPs' with significantly enhanced POD-mimicking activity in the TME due to a remarkably higher Ce3+/Ce4+ ratio. The cancer cell membrane coating enabled our nanomedicine with homotypic targeting property. Combined with chemotherapeutic drug DOX, a selective and nearly complete tumor suppression was demonstrated in vitro and in vivo. Remarkably, under physiological condition, CCCs NPs worked as a radical scavenger to protect normal cells from oxidative stress caused by anti-cancer drug DOX and OH generated via Fenton-like reaction. Collectively, our CCCs NPs offered a therapeutic potential for effective breast cancer therapy while being free of side effects.


Asunto(s)
Cerio , Nanopartículas , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Nanomedicina , Microambiente Tumoral
16.
IEEE Trans Biomed Eng ; 68(11): 3301-3307, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33788676

RESUMEN

OBJECTIVE: To alleviate the severe limitation of the prohibitively long process of immune-fluorescence labeling on the routine applications of revolutionary intact tissue clearing techniques in diverse biomedical arenas. METHODS: We proposed an easily adaptable approach, electro-enhanced rapid staining (EERS), for highly efficient and fast immuno-labeling of thick clarified tissues. In EERS, an optimized and precisely controlled weak external electric field is engineered into a compact device to enable efficient and uniform transport of antibodies into clarified tissues while minimizing the detrimental effect of macromolecular crowding at the tissue-solution interface. RESULTS AND CONCLUSIONS: The experimental results show that, with EERS, a current density of only ∼0.2 mA mm-2 is sufficient to achieve uniform labeling of clarified tissues of several millimeters thick in a few hours without detectable tissue damage. In addition, the amount of antibodies required is also several-fold lower than conventional immuno-labeling assays under comparable conditions. SIGNIFICANCE: It is expected that the implementation of EERS in most laboratories should significantly expedite the application of tissue clearing in a broad range of research explorations, both basic and clinical.


Asunto(s)
Anticuerpos , Coloración y Etiquetado
17.
Materials (Basel) ; 14(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652572

RESUMEN

SiC particle reinforced aluminum alloy has a wide application in the aerospace industries. In this study, laser shock peening (LSP), an advanced surface modification technique, was employed for SiCp/2009Al composite to reveal its microstructure, microhardness and residual stress evolution. After peening, high densities of dislocations were induced in the aluminum substrate, and stacking faults were introduced into the SiC particle. The microhardness was increased from 155-170 HV to 170-185 HV, with an affected depth of more than 1.5 mm. Compressive residual stresses of more than 200 MPa were introduced. The three-point bending fatigue of the base material, laser peened and milled after laser peened specimens with artificial crack notch fabricated by a femtosecond laser was investigated. The average fatigue lives of laser peened and milled after laser peened specimens were increased by up to 10.60 and 2.66 times, compared with the base material. This combined fundamental and application-based research seeks to comprehensively explore the applicability of LSP on metal matrix composite.

18.
ACS Nano ; 15(2): 2468-2480, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33565857

RESUMEN

Chronic bacterial-infected wound healing/skin regeneration remains a challenge due to drug resistance and the poor quality of wound repair. The ideal strategy is combating bacterial infection, while facilitating satisfactory wound healing. However, the reported strategy hardly achieves these two goals simultaneously without the help of antibiotics or bioactive molecules. In this work, a two-dimensional (2D) Ti3C2Tx MXene with excellent conductivity, biocompatibility, and antibacterial ability was applied in developing multifunctional scaffolds (HPEM) for methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. HPEM scaffolds were fabricated by the reaction between the poly(glycerol-ethylenimine), Ti3C2Tx MXene@polydopamine (MXene@PDA) nanosheets, and oxidized hyaluronic acid (HCHO). HPEM scaffolds presented multifunctional properties containing self-healing behavior, electrical conductivity, tissue-adhesive feature, antibacterial activity especially for MRSA resistant to many commonly used antibiotics (antibacterial efficiency was 99.03%), and rapid hemostatic capability. HPEM scaffolds enhanced the proliferation of normal skin cells with negligible toxicity. Additionally, HPEM scaffolds obviously accelerated the MRSA-infected wound healing (wound closure ratio was 96.31%) by efficient anti-inflammation effects, promoting cell proliferation, and the angiogenic process, stimulating granulation tissue formation, collagen deposition, vascular endothelial differentiation, and angiogenesis. This study indicates the important role of multifunctional 2D MXene@PDA nanosheets in infected wound healing. HPEM scaffolds with multifunctional properties provide a potential strategy for MRSA-infected wound healing/skin regeneration.


Asunto(s)
Hemostáticos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Bacterias , Conductividad Eléctrica , Hemostáticos/farmacología , Titanio , Cicatrización de Heridas
19.
ACS Appl Mater Interfaces ; 12(48): 54041-54052, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33201670

RESUMEN

In this work, a facile strategy was proposed to prepare a series of brushlike thermoplastic polyurethane (TPU) coatings with mechanically robust, self-cleaning, and icephobic performance. Through a simple multicomponent click reaction of thiolactone with a diamine compound and mono-ethenyl-terminated polydimethylsiloxane (mono-ethenyl-PDMS), a diol with amide groups and flexible PDMS was synthesized, and a novel TPU could be obtained productively by a reaction of isocyanate and diol. The unique chain structure endowed TPU films with ascendant self-stratifying properties. During solvent vapor annealing, flexible PDMS chains migrated and enriched to the surface while urethane linkages with a strong interaction tended to locate at the substrate. Based on this, TPU-PDMS films exhibited mechanically robust property, and the tensile strength value of TPU-PDMS-3 showed a sharp increase to 48.62 MPa. The resultant TPU-PDMS-10 coatings exhibited a water repellent behavior and possessed superior movability of droplet water, and also the dirt on it could be readily removed by rinsing with water without leaving any traces. Furthermore, three different criteria were used to characterize the icephobic performance. The coatings exhibited a significantly lower freezing point (approximately -27 °C) of supercooled water, longer delay-icing time, and less ice adhesion shear strength. Therefore, these novel brushlike TPU coatings have tremendous potential applications.

20.
Biomed Res Int ; 2020: 2539150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029498

RESUMEN

Osteosarcoma (OS) is a widely common sort among bone cancer in children, and its overall survival ratio is low. The hidden mechanism of tumor genesis, progression, and metastasis regarding osteosarcoma needed to be further investigated. Emerging studies concentrated on exploring the functional roles of circular RNAs (circRNAs) in human cancers. The present study conducted a loss-of-function experiments to explore the circSMARCA5-induced influence on OS proliferation, cell cycle, and metastasis. Moreover, our manuscript unearthed the potential mechanisms of circSMARCA5 in regulating OS progression by in silico analysis. Our findings would provide new evidence to support that circSMARCA5 could be indicated as a biomarker for OS.


Asunto(s)
Movimiento Celular/genética , Redes Reguladoras de Genes , Osteosarcoma/genética , Osteosarcoma/patología , ARN Circular/metabolismo , Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Técnicas de Silenciamiento del Gen , Humanos , Invasividad Neoplásica , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA