Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Comb Chem High Throughput Screen ; 27(13): 1984-1998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963027

RESUMEN

BACKGROUND: BLCA is a common urothelial malignancy characterized by a high recurrence rate. Despite its prevalence, the molecular mechanisms underlying its development remain unclear. AIMS: This study aimed to explore new prognostic biomarkers and investigate the underlying mechanism of bladder cancer (BLCA). OBJECTIVE: The objective of this study is to identify key prognostic biomarkers for BLCA and to elucidate their roles in the disease. METHODS: We first collected the overlapping DEGs from GSE42089 and TCGA-BLCA samples for the subsequent weighted gene co-expression network analysis (WGCNA) to find a key module. Then, key module genes were analyzed by the MCODE algorithm, prognostic risk model, expression and immunohistochemical staining to identify the prognostic hub gene. Finally, the hub gene was subjected to clinical feature analysis, as well as cellular function assays. RESULTS: In WGCNA on 1037 overlapping genes, the blue module was the key module. After a series of bioinformatics analyses, POLE2 was identified as a prognostic hub gene in BLCA from potential genes (TROAP, POLE2, ANLN, and E2F8). POLE2 level was increased in BLCA and related to different clinical features of BLCA patients. Cellular assays showed that si-POLE2 inhibited BLCA proliferation, and si-POLE2+ 740Y-P in BLCA cells up-regulated the PI3K and AKT protein levels. CONCLUSION: In conclusion, POLE2 was identified to be a promising prognostic biomarker as an oncogene in BLCA. It was also found that POLE2 exerts a promoting function by the PI3K/AKT signaling pathway in BLCA.


Asunto(s)
Proliferación Celular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias de la Vejiga Urinaria , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo
2.
Vet Microbiol ; 296: 110198, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067145

RESUMEN

Senecavirus A (SVA) is a causative agent that can cause vesicular disease in swine, which causes a great threat to the swine husbandry in the world. Therefore, it is necessary to develop a vaccine that can effectively prevent the spread of SVA. In this study, we developed a 24-polymeric nano-scaffold using ß-annulus peptide from tomato bushy effect virus (TBSV) by coupling this antigen to SVA B cell epitope VP121-26 and VP2 proteins via linkers, respectively. The SVA-based nanoparticle protein of the VP1(B)-ß-VP2 was expressed and purified by low-cost prokaryotic system to prepare a SVA nanoparticle vaccine. The immunological protective effect of SVA nanoparticle vaccine was evaluated in mouse and swine models, respectively. The results suggested that both mice and swine could induce high levels SVA neutralizing antibodies and IgG antibodies after two doses immunization. In addition, the swine challenge protection experiment showed that the protection rate of immune SVA nanoparticle vaccine and SVA inactivated vaccine both were 80 %, while the negative control had no protection effect. It demonstrated that SVA nanoparticle vaccine effectively prevented SVA infection in swine. In summary, the preparation of SVA vaccine by using ß-annulus peptide is a promising candidate vaccine for prevent SVA transmission, and provides a new idea for the development of novel SVA vaccines.

3.
BMC Genomics ; 25(1): 603, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886660

RESUMEN

BACKGROUND: A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS). RESULTS: In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively. CONCLUSIONS: These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.


Asunto(s)
Aspergillus , Familia de Multigenes , Aspergillus/genética , Aspergillus/metabolismo , Regiones Árticas , Humanos , Productos Biológicos/metabolismo , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Línea Celular Tumoral , Vías Biosintéticas/genética , Metabolismo Secundario/genética , Genoma Fúngico
4.
Front Endocrinol (Lausanne) ; 15: 1352616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803479

RESUMEN

Objectives: Hashimoto's thyroiditis (HT) is a common autoimmune disease whose etiology involves a complex interplay between genetics and environment. Previous studies have demonstrated an association between immune cells and HT. However, the casual relationship was not clear. We aimed to explore the causal associations between signatures of immune cells and HT. Methods: In this study, bidirectional two-sample Mendelian randomization (MR) analysis was conducted to investigate the potential causal relationship between 731 immune cell signatures and HT by using genome-wide association study (GWAS) data. Heterogeneity and horizontal pleiotropy were detected through extensive sensitivity analyses. Results: The increased levels of six immune phenotypes were observed to be causally associated with increased risk of HT P < 0.01, which were CD3 on CM CD8br, CD3 on CD39+ secreting Treg, HLA DR on CD33dim HLA DR+ CD11b-, CD3 on CD4 Treg, CD62L- plasmacytoid DC %DC, and CD3 on CD45RA+ CD4+. In addition, the levels of FSC-A on HLA DR+ T cell and CD62L on monocyte were associated with disease risk of HT P < 0.01. In addition, HT also had causal effects on CD3 on CM CD8br, CCR2 on monocyte, CD25 on CD39+ resting Treg, and CCR2 on CD62L+ myeloid DC P < 0.05. Conclusions: In this study, we demonstrated the genetic connection between immune cell traits and HT, thereby providing guidance and direction for future treatment and clinical research.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Hashimoto , Análisis de la Aleatorización Mendeliana , Humanos , Enfermedad de Hashimoto/genética , Enfermedad de Hashimoto/inmunología , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
5.
J Ethnopharmacol ; 331: 118300, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718889

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY: This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS: GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS: Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS: The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.


Asunto(s)
Alcanos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Resistencia a la Insulina , Extractos Vegetales , Ratas Sprague-Dawley , Schisandra , Animales , Schisandra/química , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Ratas , Alcanos/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Dieta Alta en Grasa/efectos adversos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Estreptozocina , Receptores Acoplados a Proteínas G/metabolismo , Lignanos/farmacología , Lignanos/aislamiento & purificación
6.
Environ Toxicol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747344

RESUMEN

Breast cancer (BC) is a heterogeneous malignancy with a dismal prognosis. Disulfidptosis is a novel type of regulated cell death that happens in the presence of glucose deficiency and is linked to the metabolic process of glycolysis. However, the mechanism of action of disulfidptosis and glycolysis-related genes (DGRG) in BC, as well as their prognostic value in BC patients, remain unknown. After identifying the differentially expressed DGRG in normal and BC tissues, a number of machine learning algorithms were utilized to select essential prognostic genes to develop a model, including SLC7A11, CACNA1H, SDC1, CHST1, and TFF3. The expression characteristics of these genes were then examined using single-cell RNA sequencing, and BC was classified into three clusters using "ConsensusClusterPlus" based on these genes. The DGRG model's median risk score can categorize BC patients into high-risk and low-risk groups. Furthermore, we investigated variations in clinical landscape, immunoinvasion analysis, tumor immune dysfunction and rejection (TIDE), and medication sensitivity in patients in the DGRG model's high- and low-risk groups. Patients in the low-risk group performed better on immunological and chemotherapeutic therapies and had lower TIDE scores. In conclusion, the DGRG model we developed has significant clinical application potential because it can accurately predict the prognosis of BC, TME, and pharmacological treatment responses.

7.
Clin Appl Thromb Hemost ; 30: 10760296241254104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38772566

RESUMEN

This study aims to identify risk factors for secondary venous thromboembolism (VTE) in stroke patients and establish a nomogram, an accurate predictor of probability of VTE occurrence during hospitalization in stroke patients. Medical Information Mart for Intensive Care IV (MIMIC-IV) database of critical care medicine was utilized to retrieve information of stroke patients admitted to the hospital between 2008 and 2019. Patients were randomly allocated into train set and test set at 7:3. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for secondary VTE in stroke patients. A predictive nomogram model was constructed, and the predictive ability of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). This study included 266 stroke patients, with 26 patients suffering secondary VTE after stroke. A nomogram for predicting risk of secondary VTE in stroke patients was built according to pulmonary infection, partial thromboplastin time (PTT), log-formed D-dimer, and mean corpuscular hemoglobin (MCH). Area under the curve (AUC) of the predictive model nomogram was 0.880 and 0.878 in the train and test sets, respectively. The calibration curve was near the diagonal, and DCA curve presented positive net benefit. This indicates the model's good predictive performance and clinical utility. The nomogram effectively predicts the risk probability of secondary VTE in stroke patients, aiding clinicians in early identification and personalized treatment of stroke patients at risk of developing secondary VTE.


Asunto(s)
Nomogramas , Accidente Cerebrovascular , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/etiología , Tromboembolia Venosa/epidemiología , Femenino , Masculino , Accidente Cerebrovascular/sangre , Anciano , Factores de Riesgo , Persona de Mediana Edad , Bases de Datos Factuales
8.
Eur J Gastroenterol Hepatol ; 36(7): 875-883, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625824

RESUMEN

Previous observational studies have found that the gut microbiota is closely related to the pathogenesis of gastroesophageal reflux disease (GERD), while their causal relationship is unclear. A two-sample multivariate Mendelian randomization analysis was implemented to estimate the causal effect of gut microbiota on GERD. The gut microbiota aggregated statistics were derived from a meta-analysis of the largest available genome-wide association studies (GWAS) conducted by the MiBioGen alliance ( n  = 13 266). GERD aggregated statistics were derived from published GWAS (129 080 cases and 473 524 controls). A bidirectional two-sample Mendelian randomization study was conducted to explore the causal relationship between gut microbiota and GERD using the inverse variance weighted (IVW), Mendelian randomization Egger, single model, weighted median, and weighted model. To verify the stability of the main results of Mendelian randomization analysis, we performed sensitivity analysis. Based on the results of IVW, we found that Anaerostipes was causally associated with an increased risk of GERD [odds ratio (OR): 1.09, P  = 0.018]. Eight gut microbiota taxa ( Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, Clostridiales vadin BB60 group, Rikenellaceae, Lachnospiraceae UCG004, Methanobrevibacter , and unknown genus id.1000000073 ) are predicted to act causally in suppressing the risk of GERD ( P  < 0.05). In addition, reverse Mendelian randomization analyses revealed that the abundance of 15 gut microbiota taxon was found to be affected by GERD. No significant estimation of heterogeneity or pleiotropy is detected. Our study presents a complicated causal relationship between gut microbiota and GERD that offers guidance on the selection of appropriate probiotics as clinical interventions for GERD.


Asunto(s)
Reflujo Gastroesofágico , Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Reflujo Gastroesofágico/microbiología , Factores de Riesgo
9.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582825

RESUMEN

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Asunto(s)
Streptomyces , Fermentación , Streptomyces/genética , Aminoglicósidos , Antibacterianos , Medios de Cultivo
10.
Nat Prod Rep ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651516

RESUMEN

Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.

11.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611953

RESUMEN

Bacterial virulence factors and biofilm development can be controlled by the quorum-sensing (QS) system, which is also intimately linked to antibiotic resistance in bacteria. In previous studies, many researchers found that quorum-sensing inhibitors (QSIs) can affect the development of bacterial biofilms and prevent the synthesis of many virulence factors. However, QSIs alone have a limited ability to suppress bacteria. Fortunately, when QSIs are combined with antibiotics, they have a better therapeutic effect, and it has even been demonstrated that the two together have a synergistic antibacterial effect, which not only ensures bactericidal efficiency but also avoids the resistance caused by excessive use of antibiotics. In addition, some progress has been made through in vivo studies on the combination of QSIs and antibiotics. This article mainly expounds on the specific effect of QSIs combined with antibiotics on bacteria and the combined antibacterial mechanism of some QSIs and antibiotics. These studies will provide new strategies and means for the clinical treatment of bacterial infections in the future.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Percepción de Quorum , Biopelículas , Factores de Virulencia
12.
Hormones (Athens) ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564143

RESUMEN

PURPOSE: Evidence from previous experimental and observational research demonstrates that the gut microbiota is related to circulating adipokine concentrations. Nevertheless, the debate as to whether gut microbiome composition causally influences circulating adipokine concentrations remains unresolved. This study aimed to take an essential step in elucidating this issue. METHODS: We used two-sample Mendelian randomization (MR) to causally analyze genetic variation statistics for gut microbiota and four adipokines (including adiponectin, leptin, soluble leptin receptor [sOB-R], and plasminogen activator inhibitor-1 [PAI-1]) from large-scale genome-wide association studies (GWAS) datasets. A range of sensitivity analyses was also conducted to assess the stability and reliability of the results. RESULTS: The composite results of the MR and sensitivity analyses revealed 22 significant causal associations. In particular, there is a suggestive causality between the family Clostridiaceae1 (IVW: ß = 0.063, P = 0.034), the genus Butyrivibrio (IVW: ß = 0.029, P = 0.031), and the family Alcaligenaceae (IVW: ß=-0.070, P = 0.014) and adiponectin. Stronger causal effects with leptin were found for the genus Enterorhabdus (IVW: ß=-0.073, P = 0.038) and the genus Lachnospiraceae (NK4A136 group) (IVW: ß=-0.076, P = 0.01). Eight candidate bacterial groups were found to be associated with sOB-R, with the phylum Firmicutes (IVW: ß = 0.235, P = 0.03) and the order Clostridiales (IVW: ß = 0.267, P = 0.028) being of more interest. In addition, the genus Roseburia (IVW: ß = 0.953, P = 0.022) and the order Lactobacillales (IVW: ß=-0.806, P = 0.042) were suggestive of an association with PAI-1. CONCLUSION: This study reveals a causal relationship between the gut microbiota and circulating adipokines and may help to offer novel insights into the prevention of abnormal concentrations of circulating adipokines and obesity-related diseases.

13.
Front Endocrinol (Lausanne) ; 15: 1364157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586452

RESUMEN

Background: Multiple evidence suggests that thyroid function is associated with polycystic ovary syndrome (PCOS), but whether thyroid function is causally related to PCOS is unclear. To investigate whether the association reflect causality, a Mendelian randomization (MR) analysis was conducted. Methods: Single nucleotide polymorphisms (SNPs) involved in this study were acquired from The ThyroidOmics Consortium and the IEU Open Genome-wide association study (GWAS) database, respectively. In forward MR analysis, we included normal free thyroxine (FT4, n=49,269), normal thyroid-stimulating hormone (TSH, n=54,288), hypothyroidism (n=53,423) and hyperthyroidism (n=51,823) as exposure. The outcome was defined as PCOS in a sample size of 16,380,318 individuals. The exposure in the reverse MR analyses was chosen as PCOS, while the outcome consisted of the four phenotypes of thyroid function. The inverse-variance weighted (IVW) method was performed as the major analysis, supplemented by sensitivity analyses. Results: The occurrence of PCOS was associated with increased risk of hyperthyroidism (IVW, OR=1.08, 95%CI=1.02-1.13, P=0.004). No evidence suggested that other phenotypes of thyroid function were related to PCOS. Conclusions: Our findings demonstrate a cause-and-effect connection between PCOS and hyperthyroidism. The study established foundation for further investigation for interaction between thyroid function and PCOS.


Asunto(s)
Hipertiroidismo , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Hipertiroidismo/epidemiología , Hipertiroidismo/genética
14.
Food Chem ; 450: 139261, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657344

RESUMEN

This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron­cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.


Asunto(s)
Compuestos de Cadmio , Cobre , Técnicas Electroquímicas , Mercurio , Estructuras Metalorgánicas , Puntos Cuánticos , Sulfuros , Puntos Cuánticos/química , Cobre/química , Mercurio/análisis , Mercurio/química , Sulfuros/química , Compuestos de Cadmio/química , Técnicas Electroquímicas/instrumentación , Estructuras Metalorgánicas/química , Contaminación de Alimentos/análisis , Electrodos , Límite de Detección
15.
World J Microbiol Biotechnol ; 40(5): 156, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587708

RESUMEN

In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.


Asunto(s)
Streptomyces , Streptomyces/genética , Metabolismo Secundario/genética , Mapeo Cromosómico , Biología Computacional , Ingeniería Metabólica
16.
J Am Chem Soc ; 146(10): 6686-6696, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38425051

RESUMEN

Naturally evolved metabolons have the ability to assemble and disassemble in response to environmental stimuli, allowing for the rapid reorganization of chemical reactions in living cells to meet changing cellular needs. However, replicating such capability in synthetic metabolons remains a challenge due to our limited understanding of the mechanisms by which the assembly and disassembly of such naturally occurring multienzyme complexes are controlled. Here, we report the synthesis of chemical- and light-responsive protein cages for assembling synthetic metabolons, enabling the dynamic regulation of enzymatic reactions in living cells. Particularly, a chemically responsive domain was fused to a self-assembled protein cage subunit, generating engineered protein cages capable of displaying proteins containing cognate interaction domains on their surfaces in response to small molecular cues. Chemical-induced colocalization of sequential enzymes on protein cages enhances the specificity of the branched deoxyviolacein biosynthetic reactions by 2.6-fold. Further, by replacing the chemical-inducible domain with a light-inducible dimerization domain, we created an optogenetic protein cage capable of reversibly recruiting and releasing targeted proteins onto and from the exterior of the protein cages in tens of seconds by on-off of blue light. Tethering the optogenetic protein cages to membranes enables the formation of light-switchable, membrane-bound metabolons, which can repeatably recruit-release enzymes, leading to the manipulation of substrate utilization across membranes on demand. Our work demonstrates a powerful and versatile strategy for constructing dynamic metabolons in engineered living cells for efficient and controllable biocatalysis.


Asunto(s)
Complejos Multienzimáticos , Proteínas , Proteínas/química , Complejos Multienzimáticos/química
17.
Microb Cell Fact ; 23(1): 93, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539193

RESUMEN

Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.


Asunto(s)
Fusarium , Fusarium/genética , Fusarium/metabolismo , Hongos/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Biología Computacional , Familia de Multigenes , Vías Biosintéticas/genética
18.
Brain Imaging Behav ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407738

RESUMEN

Suicide is a major concern for health, and depression is an established proximal risk factor for suicide. This study aimed to investigate white matter features associated with suicide. We constructed white matter structural networks by deterministic tractography via diffusion tensor imaging in 51 healthy controls, 47 depressed patients without suicide plans or attempts and 56 depressed patients with suicide plans or attempts. Then, graph theory analysis was used to measure global and nodal network properties. We found that local efficiency was decreased and path length was increased in suicidal depressed patients compared to healthy controls and non-suicidal depressed patients; moreover, the clustering coefficient was decreased in depressed patients compared to healthy controls; and the global efficiency and normalized characteristic path length was increased in suicidal depressed patients compared to healthy controls. Similarly, compared with those in non-suicidal depressed patients, nodal efficiency in the thalamus, caudate, medial orbitofrontal cortex, hippocampus, olfactory cortex, supplementary motor area and Rolandic operculum was decreased. In summary, compared with those of non-suicidal depressed patients, the structural connectome of suicidal depressed patients exhibited weakened integration and segregation and decreased nodal efficiency in the fronto-limbic-basal ganglia-thalamic circuitry. These alterations in the structural networks of depressed suicidal brains provide insights into the underlying neurobiology of brain features associated with suicide.

19.
ACS Omega ; 9(6): 6492-6504, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371813

RESUMEN

Extracellular vesicles (EVs) are increasingly used for disease diagnosis and treatment. Among them, red blood cell-derived EVs (RBC-EVs) have attracted great attention due to their abundant sources and low risks of gene transfer (RBC-EVs lack nuclear and mitochondrial DNA). Here, we first revealed the high expression level of membrane protein solute carrier family 4 member 1 (SLC4A1) in RBC-EVs through proteomic analysis. We then identified several binding peptides with high affinity for the SLC4A1 extracellular domain (SLC4A1-EC) from phage display library screening. A high affinity of SLC4A1-EC and the three peptides (XRB2, XRE4, and XRH7) were assessed in vitro using surface plasmon resonance analysis and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The binding sites of SLC4A1-EC and polypeptides were further predicted by LigPlot + analysis, and the results showed that these three polypeptides could bind to part of the hydrophobic residues of SLC4A1-EC. The binding efficiency of the anchor peptides to the RBC-EVs was further verified by flow cytometry and fluorescence imaging. In conclusion, we successfully screened three specific RBC-EV-targeting peptides which could potentially be utilized for isolating RBC-derived EVs from serum samples. More importantly, this peptide could be coupled with targeting peptides to modify RBC-EVs for drug delivery. Our work will provide a viable method for optimizing the function of RBC-EVs.

20.
Nat Prod Res ; : 1-17, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372230

RESUMEN

The genus Helleborus belongs to the Ranunculaceae family, distributed in southeastern Europe and western Asia. In folk medicine, it is commonly used as an anti-inflammatory and analgesic medicine for rheumatoid arthritis and bruises. Through reviewing recent articles, it was found that two hundred and twenty-six compounds have been isolated and identified from the genus Helleborus. These compounds include steroids, flavonoids, phenylpropanoids, lignans, anthraquinones, phenolics and others. Among them, the main chemical constituents are steroids. Pharmacological studies show Helleborus has anti-cancer, immunomodulatory, anti-inflammatory, analgesic, anti-hyperglycaemic, antioxidant and antibacterial properties. This article reviews the botany, phytochemistry, pharmacological effects and clinical applications of the genus Helleborus. Hopefully, it will provide a reference for in-depth research and exploitation of the genus Helleborus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA