Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Langmuir ; 40(28): 14674-14684, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958429

RESUMEN

Magnesium-based biodegradable metal bone implants exhibit superior mechanical properties compared to biodegradable polymers for orthopedic and cardiovascular stents. In this study, MgZZC-x (x = 1, 1.2) alloys were screened by in vitro biocompatibility tests in three simulated body fluids under nontoxic conditions. The MgZZC-1 alloys with better biocompatibility were selected to predict the days required for complete degradation. The evolution of degradation products was analyzed, and the mechanism of formation of the product film was inferred. A degradation kinetic model was established to investigate the effect of MEM components on the degradation of the alloys. The results demonstrate that the proteins in MEM can greatly retard the degradation progress by attaching to the surface of MgZZC-1 alloys, which are predicted to degrade completely within 341 days. The carbonate and phosphate buffers were adjusted to pH in MEM solution, delaying the degradation of magnesium alloys. This process in MEM more accurately reflects the actual degradation in the body and is superior to that in Hanks and SBF solutions. This study will promote the application of biodegradable materials in clinical medicine.


Asunto(s)
Aleaciones , Materiales Biocompatibles , Líquidos Corporales , Magnesio , Aleaciones/química , Líquidos Corporales/química , Magnesio/química , Materiales Biocompatibles/química , Concentración de Iones de Hidrógeno , Cinética , Humanos
2.
Langmuir ; 40(29): 15001-15012, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38991982

RESUMEN

Nb-microalloyed steels are widely used in construction engineering fields due to their excellent mechanical properties, but they face serious corrosion problems in service environments. Pitting corrosion is the severest form of corrosion, and the types of inclusions are the leading cause to induce pitting corrosion. A new strategy is proposed to enhance the corrosion resistance of steels by achieving a beneficial transformation of inclusions with Ce treatment. In this paper, two types of Nb-microalloyed steels (0% Ce and 0.0058% Ce steel) were prepared to study the modification effect on inclusions in industrial production. The spherical CaS•C12A7 inclusions were modified to smaller ellipsoidal Ce2O2S inclusions, and the proportion of inclusions (0-2 µm) increased significantly from 27 to 66%, while large inclusions (>6 µm) disappeared. A kinetic model of inclusion evolution was established. The results of electrochemical tests indicated that the corrosion potential was positively shifted, and the corrosion current was reduced after Ce treatment. Additionally, the number of defects in the passivation film was decreased, and the corrosion resistance of the steel was significantly improved. The addition of Ce changed the types of inclusions and reduced the number of pitting nucleation points, which led to a remarkable reduction in the number and size of pitting pits. The mechanism of pitting corrosion induced by different types of inclusions was further investigated, and a pitting corrosion model was modeled based on the immersion experiments. Research results provide theoretical support for enhancing the corrosion resistance of steel.

3.
Zhongguo Zhen Jiu ; 44(6): 685-8, 2024 Jun 12.
Artículo en Chino | MEDLINE | ID: mdl-38867631

RESUMEN

The paper introduces the thinking of the diagnosis and treatment with high-dense silver needle therapy for lumbar spinal stenosis (LSS) based on the theory of six-meridian differentiation. According to the severity of LSS and the depth of illness location, LSS is differentiated as six syndromes/patterns, including taiyang disorder, yangming disorder, shaoyang disorder, shaoyin disorder, jueyin disorder and taiyin disorder. The high-dense silver needle therapy is used. The main points include the bilateral Jiaji points (EX-B 2) from L1 to L5 and the acupoints of the bladder meridian of foot-taiyang (1.5 cun lateral to each side of L1 to L5); and the supplementary points are selected from the affected meridians. According to the disorders of six meridians, the length of moxa stick is adjusted in warm acupuncture, targeting the tender sites of soft tissue damage. In order to obtain the satisfactory effects, the appropriate physical exercise is applicable rather than absolutely limiting the movement of affected vertebrae during the treatment.


Asunto(s)
Puntos de Acupuntura , Terapia por Acupuntura , Meridianos , Estenosis Espinal , Humanos , Estenosis Espinal/terapia , Vértebras Lumbares , Masculino , Persona de Mediana Edad
4.
Mater Today Bio ; 26: 101111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38933413

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) are ideal candidates for the production of standardised and scalable bioengineered bone grafts. However, stable induction and osteogenic differentiation of iMSCs pose challenges in the industry. We developed a precise differentiation method to produce homogeneous and fully differentiated iMSCs. In this study, we established a standardised system to prepare iMSCs with increased osteogenic potential and improved bioactivity by introducing a CHIR99021 (C91)-treated osteogenic microenvironment (COOME). COOME enhances the osteogenic differentiation and mineralisation of iMSCs via canonical Wnt signalling. Global transcriptome analysis and co-culturing experiments indicated that COOME increased the pro-angiogenesis/neurogenesis activity of iMSCs. The superior osteogenic differentiation and mineralisation abilities of COOME-treated iMSCs were also confirmed in a Bio3D module generated using a polycaprolactone (PCL) and cell-integrated 3D printing (PCI3D) system, which is the closest model to in vivo research. This COOME-treated iMSCs differentiation system offers a new perspective for generating highly osteogenic, bioactive, and anatomically matched grafts for clinical applications. Statement of significance: Although human induced pluripotent stem cell-derived MSCs (iMSCs) are ideal seed cells for synthetic bone implants, the challenges of stable induction and osteogenic differentiation hinder their clinical application. This study established a standardised system for the scalable preparation of iMSCs with improved osteogenic potential by combining our precise iMSC differentiation method with the CHIR99021 (C91)-treated osteocyte osteogenic microenvironment (COOME) through the activation of canonical Wnt signalling. Moreover, COOME upregulated the pro-angiogenic and pro-neurogenic capacities of iMSCs, which are crucial for the integration of implanted bone grafts. The superior osteogenic ability of COOME-treated iMSCs was confirmed in Bio3D modules generated using PCL and cell-integrated 3D printing systems, highlighting their functional potential in vivo. This study contributes to tissue engineering by providing insights into the functional differentiation of iMSCs for bone regeneration.

5.
Life Sci ; 351: 122849, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897346

RESUMEN

EGFR tyrosine kinase inhibitor (TKI) resistance is a major challenge for EGFR-mutant non-small cell lung cancer (NSCLC) treatment. Our previous work revealed that overexpression of AXL promoted EGFR-TKI resistance through epithelial-mesenchymal transition (EMT) in a subset of NSCLC patients. Compared with erlotinib resistant and sensitive cells, RP11-874 J12.4 was upregulated in erlotinib-resistant NSCLC cells (HCC827-ER3). Interestingly, the expression of RP11-874 J12.4 positively correlated with AXL. Besides, RP11-874 J12.4 promotes NSCLC cell proliferation and metastasis in vitro. Mechanistically, RP11-874 J12.4 promoted AXL expression through sponge with miR-34a-5p, which was reported to inhibit the translation of AXL mRNA. Meanwhile, the expression of RP11-874 J12.4 in lung cancer tumors were higher than the adjacent tissue, and those patients with high expression of RP11-874 J12.4 showed a poor prognosis in clinical. High expression of RP11-874 J12.4 might be a biomarker for NSCLC patients with erlotinib resistance. These findings reveal a novel insight into the mechanism of erlotinib resistance in NSCLC, and it might be a promising target for the diagnosis and treatment of NSCLC.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Clorhidrato de Erlotinib , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Animales , Ratones
6.
Diabetes ; 73(8): 1325-1335, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771941

RESUMEN

An important factor in the development of type 1 diabetes (T1D) is the deficiency of inhibitory immune checkpoint ligands, specifically programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9), in ß-cells. Therefore, modulation of pancreas-infiltrated T lymphocytes by exogenous PD-L1 or Gal-9 is an ideal approach for treating new-onset T1D. We genetically engineered macrophage cells to generate artificial extracellular vesicles (aEVs) overexpressing PD-L1 and Gal-9, which could restrict islet autoreactive T lymphocytes and protect ß-cells from destruction. Intriguingly, overexpression of Gal-9 stimulated macrophage polarization to the M2 phenotype with immunosuppressive attributes. Alternatively, both PD-L1- and Gal-9-presenting aEVs (PD-L1-Gal-9 aEVs) favorably adhered to T cells via the interaction of programmed cell death protein 1/PD-L1 or T-cell immunoglobulin mucin 3/Gal-9. Moreover, PD-L1-Gal-9 aEVs prominently promoted effector T-cell apoptosis and splenic regulatory T (Treg) cell formation in vitro. Notably, PD-L1-Gal-9 aEVs efficaciously reversed new-onset hyperglycemia in NOD mice, prevented T1D progression, and decreased the proportion and activation of CD4+ and CD8+ T cells infiltrating the pancreas, which together contributed to the preservation of residual ß-cell survival and mitigation of hyperglycemia.


Asunto(s)
Antígeno B7-H1 , Diabetes Mellitus Tipo 1 , Vesículas Extracelulares , Galectinas , Ratones Endogámicos NOD , Animales , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Vesículas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Ratones , Galectinas/metabolismo , Galectinas/genética , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Linfocitos T Reguladores/inmunología , Bioingeniería/métodos , Femenino
8.
PeerJ ; 12: e17380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799063

RESUMEN

As the inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), the progression of nonalcoholic steatohepatitis (NASH) is associated with disorders of glycerophospholipid metabolism. Scoparone is the major bioactive component in Artemisia capillaris which has been widely used to treat NASH in traditional Chinese medicine. However, the underlying mechanisms of scoparone against NASH are not yet fully understood, which hinders the development of effective therapeutic agents for NASH. Given the crucial role of glycerophospholipid metabolism in NASH progression, this study aimed to characterize the differential expression of glycerophospholipids that is responsible for scoparone's pharmacological effects and assess its efficacy against NASH. Liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) was performed to get the concentrations of glycerophospholipids, clarify mechanisms of disease, and highlight insights into drug discovery. Additionally, pathologic findings also presented consistent changes in high-fat diet-induced NASH model, and after scoparone treatment, both the levels of glycerophospholipids and histopathology were similar to normal levels, indicating a beneficial effect during the observation time. Altogether, these results refined the insights on the mechanisms of scoparone against NASH and suggested a route to relieve NASH with glycerophospholipid metabolism. In addition, the current work demonstrated that a pseudotargeted lipidomic platform provided a novel insight into the potential mechanism of scoparone action.


Asunto(s)
Cumarinas , Glicerofosfolípidos , Lipidómica , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Glicerofosfolípidos/metabolismo , Cumarinas/farmacología , Cumarinas/uso terapéutico , Lipidómica/métodos , Ratones , Cromatografía Liquida/métodos , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Espectrometría de Masas/métodos , Metabolismo de los Lípidos/efectos de los fármacos
9.
Front Microbiol ; 15: 1327630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601933

RESUMEN

Background and objectives: Growing studies show that gut microbiota is closely associated with depression. Acupuncture treatment could regulate the gut microbiota of many diseases. Here, we aim to observe the effect of electroacupuncture (EA) on gut microbiota in rats that showed depressive-like behavior. Materials and methods: The rats were randomly divided into normal group, chronic unpredictable mild stress model (CUMS) group, CUMS + electroacupuncture (EA) group, and CUMS + sham-electroacupuncture (Sham) group. The CUMS+EA rats were treated with EA stimulation at bilateral Zusanli (ST36) and Tianshu (ST25) acupoints for 2 weeks (0.7 mA, 2/100 Hz, 30 min/day). The rats in the sham EA group were treated with the same conditions without inserting needles and electrical stimulation. Behavioral tests were conducted by forced swimming test (FST), open field test (OFT), and sucrose preference test (SPT) to assess depression-like behavior in rats. The relative abundance of intestinal bacteria in rat feces was detected by 16S rRNA analysis. The expression of calcitonin-gene-related peptide (CGRP), vasoactive intestinal peptide (VIP), somatostatin (SST), and adrenocorticotropic hormone (ACTH) in serum was detected by ELISA kit, and VIP, CGRP, and SST in the colon were detected by qRT-PCR and Western blot. Results: Chronic unpredictable mild stress model rats exhibited depressive-like behaviors and had differential abundance vs. control rats. CUMS significantly decreased the relative abundance of Bifidobacterium and Streptococcus at the genus level, CGRP in plasma (p < 0.05), and significantly increased the intestine propulsion rate, the mRNA and protein expression of VIP, SST, and mRNA in the colon, and ATCH in plasma (p < 0.05). EA rats with microbial profiles were distinct from CUMS rats. EA markedly reduced the depressive-like behaviors, significantly increased the intestine propulsion rate, the relative abundance of Bacteroidetes, Proteobacteria, and Actinobacteria at the phylum level, Bifidobacterium and Streptococcus at the genus level, and VIP and CGRP in plasma (p < 0.05), and significantly decreased Firmicutes, the ratio of Firmicutes to Bacteroidetes at the phylum level, ACTH and SST in plasma, and SST mRNA in the colon (p < 0.05). Conclusion: The antidepressant effect of EA at ST36 and ST25 is related to regulating intestinal flora and the neurotransmitter system. Our study suggests that EA contributes to the improvement of depression, and gut microbiota may be one of the mechanisms of EA effect.

10.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611153

RESUMEN

Carbon fiber fabric-reinforced poly(ether ether ketone) (CFF-PEEK) composites exhibit exceptional mechanical properties, and their flexibility and conformability make them a promising alternative to traditional prepregs. However, the formation of the CFF-PEEK composite is trapped in the high viscosity of PEEK, the smooth surface, and tightly interwoven bundles of CFF. It is more difficult for the resin to flow through the fibers of complex textile structures. Here, a simple film stacking method using the hot-pressing process of plain-woven CFF-PEEK thermoplastic composites is discussed. The uniform distribution of PEEK resin between each layer of CFF reduces the flow distance during the molding process, preventing defects in the composite material effectively. Four process parameters, including molding temperature (370, 385, 400, and 415 °C), molding pressure (1, 2, 4, 8, and 10 MPa), molding time (10, 20, 30, 40, 60, and 90 min), and pre-compaction process, are considered. Interlaminar shear strength (ILSS), tensile strength, and flexural strength of CFF/PEEK composites are evaluated to optimize the process parameters. Moreover, ultrasonic scanning microscopy and scanning electron microscopy are employed to observe the formation quality and microscopic failure modes of CFF/PEEK composites, respectively. The ultimate process parameters are a molding temperature of 410 °C, molding pressure of 10 MPa, molding time of 60 min, and the need for the pre-compaction process. Under the best process parameters, the ILSS is 62.5 MPa, the flexural strength is 754.4 MPa, and the tensile strength is 796.1 MPa. This work provides valuable insight for studying the process parameters of fiber fabric-reinforced thermoplastic polymer composites and revealing their impact on mechanical properties.

11.
Langmuir ; 40(19): 10250-10260, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38688029

RESUMEN

Corrosion is an unavoidable issue that steel encounters during service; however, the generic methods employed for corrosion prevention often need high cost or preparation conditions. In this study, a facile chemical replacement deposition method was proposed to realize an anticorrosion superhydrophobic coating on a X80 steel surface. The growth mechanism of the rough structure and its impact on the wettability of the superhydrophobic coating were analyzed. The superhydrophobic coating, deposited for 50 s and modified for 30 min, achieved optimal electrochemical properties and a maximum water contact angle. The immersion test, in the saturated CO2 oilfield produced water, demonstrated the better corrosion resistance of superhydrophobic coating than X80 steel. Correspondingly, a kinetic corrosion model was established to analyze the anticorrosion mechanism. In summary, this method significantly improves the corrosion resistance of X80 steel and is attractive for other industrial fields.

12.
AAPS PharmSciTech ; 25(5): 92, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684590

RESUMEN

PURPOSE: Dry eye syndrome (DES), arising from various etiologic factors, leads to tear film instability and ocular surface damage. Given its anti-inflammatory effects, cyclosporine A (CsA) has been widely used as a short-term treatment option for DES. However, poor bioavailability and solubility of CsA in aqueous phase make the development of a cyclosporine A-based eye drop for ocular topical application a huge challenge. METHODS: In this study, a novel strategy for preparing cyclosporine A-loaded silk fibroin nanoemulsion gel (CsA NBGs) was proposed to address these barriers. Additionally, the rheological properties, ocular irritation potential, tear elimination kinetics, and pharmacodynamics based on a rabbit dry eye model were investigated for the prepared CsA NBGs. Furthermore, the transcorneal mechanism across the ocular barrier was also investigated. RESULTS: The pharmacodynamics and pharmacokinetics of CsA NBGs exhibited superior performance compared to cyclosporine eye drops, leading to a significant enhancement in the bioavailability of CsA NBGs. Furthermore, our investigation into the transcorneal mechanism of CsA NBGs revealed their ability to be absorbed by corneal epithelial cells via the paracellular pathway. CONCLUSION: The CsA NBG formulation exhibits promising potential for intraocular drug delivery, enabling safe, effective, and controlled administration of hydrophobic drugs into the eye. Moreover, it enhances drug retention within the ocular tissues and improves systemic bioavailability, thereby demonstrating significant clinical translational prospects.


Asunto(s)
Disponibilidad Biológica , Ciclosporina , Síndromes de Ojo Seco , Fibroínas , Geles , Soluciones Oftálmicas , Conejos , Animales , Fibroínas/química , Ciclosporina/administración & dosificación , Ciclosporina/farmacocinética , Ciclosporina/química , Síndromes de Ojo Seco/tratamiento farmacológico , Soluciones Oftálmicas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Administración Oftálmica , Solubilidad , Masculino , Emulsiones/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Modelos Animales de Enfermedad
13.
Pharmacology ; 109(3): 156-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38565085

RESUMEN

INTRODUCTION: IDN5706 is a tetrahydro derivative of hyperforin. In this study, we aimed to explore the effect of IDN5706 on synovial macrophages in osteoarthritis (OA) rats and the underlying mechanisms. METHODS: OA rats were employed for the in vivo experiments, and RAW264.7 cells were employed for the in vitro experiments. Histopathological changes in synovium were examined using hematoxylin-eosin staining. Cell apoptosis in synovium was assessed by TUNEL staining. Macrophage polarization was determined by immunohistochemical analysis and flow cytometry. The mRNA expression and protein level of genes were detected by qRT-PCR and Western blot. The efferocytosis of macrophages was assessed by flow cytometry. RESULTS: IDN5706 reversed the increased CD86-positive cells (M1 macrophages) and decreased CD206-positive cells (M2 macrophages), both in synovium and synovial fluid of OA rats. The in vitro experiments further confirmed the promotion effect of IDN5706 on M2 macrophages, accompanied by the elevated Arg-1 and reduced iNOS. Also, the upregulated p-mTOR in synovium and synovial fluid of OA rats were reversed by IDN5706, and the decreased M1 macrophages and increased M2 macrophages induced by IDN5706 were reversed by the mTOR activator. IDN5706 enhanced the efferocytosis of IL-4-treated RAW264.7 cells, and the animal experiments further revealed the involvement of efferocytosis in the improvement of OA by IDN5706. CONCLUSIONS: IDN5706 enhanced the efferocytosis of synovial macrophages by inducing M2 polarization via inhibiting p-mTOR, thus suppressing synovial inflammation and OA development, providing a theoretical basis for IDN5706 as a clinical drug for inflammatory diseases.


Asunto(s)
Macrófagos , Osteoartritis , Membrana Sinovial , Animales , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Ratones , Ratas , Masculino , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , Membrana Sinovial/metabolismo , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Terpenos/farmacología , Terpenos/uso terapéutico , Modelos Animales de Enfermedad , Sinovitis/tratamiento farmacológico , Sinovitis/patología , Serina-Treonina Quinasas TOR/metabolismo
14.
Biomolecules ; 14(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540772

RESUMEN

The enhancement of bioactivity in materials has become an important focus within the field of bone tissue engineering. Four-dimensional intelligent osteogenic module, an innovative fusion of 3D printing with the time axis, shows immense potential in augmenting the bioactivity of these materials, thereby facilitating autologous bone regeneration efficiently. This study focuses on novel bone repair materials, particularly bioactive scaffolds with a developmental osteogenic microenvironment prepared through 3D bioprinting technology. This research mainly creates a developmental osteogenic microenvironment named "DOME". This is primed by the application of a small amount of the small molecule drug SB216763, which activates canonical Wnt signaling in osteocytes, promoting osteogenesis and mineralization nodule formation in bone marrow stromal cells and inhibiting the formation of adipocytes. Moreover, DOME enhances endothelial cell migration and angiogenesis, which is integral to bone repair. More importantly, the DOME-PCI3D system, a 4D intelligent osteogenic module constructed through 3D bioprinting, stably supports cell growth (91.2% survival rate after 7 days) and significantly increases the expression of osteogenic transcription factors in bone marrow stromal cells and induces osteogenic differentiation and mineralization for 28 days. This study presents a novel approach for bone repair, employing 3D bioprinting to create a multifunctional 4D intelligent osteogenic module. This innovative method not only resolves challenges related to shape-matching and biological activity but also demonstrates the vast potential for applications in bone repair.


Asunto(s)
Indoles , Maleimidas , Osteogénesis , Vía de Señalización Wnt , Osteogénesis/fisiología , Osteocitos , Huesos , Ingeniería de Tejidos/métodos , Diferenciación Celular
15.
BMC Med Imaging ; 24(1): 56, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443817

RESUMEN

BACKGROUND: This study aimed to establish a dedicated deep-learning model (DLM) on routine magnetic resonance imaging (MRI) data to investigate DLM performance in automated detection and segmentation of meningiomas in comparison to manual segmentations. Another purpose of our work was to develop a radiomics model based on the radiomics features extracted from automatic segmentation to differentiate low- and high-grade meningiomas before surgery. MATERIALS: A total of 326 patients with pathologically confirmed meningiomas were enrolled. Samples were randomly split with a 6:2:2 ratio to the training set, validation set, and test set. Volumetric regions of interest (VOIs) were manually drawn on each slice using the ITK-SNAP software. An automatic segmentation model based on SegResNet was developed for the meningioma segmentation. Segmentation performance was evaluated by dice coefficient and 95% Hausdorff distance. Intra class correlation (ICC) analysis was applied to assess the agreement between radiomic features from manual and automatic segmentations. Radiomics features derived from automatic segmentation were extracted by pyradiomics. After feature selection, a model for meningiomas grading was built. RESULTS: The DLM detected meningiomas in all cases. For automatic segmentation, the mean dice coefficient and 95% Hausdorff distance were 0.881 (95% CI: 0.851-0.981) and 2.016 (95% CI:1.439-3.158) in the test set, respectively. Features extracted on manual and automatic segmentation are comparable: the average ICC value was 0.804 (range, 0.636-0.933). Features extracted on manual and automatic segmentation are comparable: the average ICC value was 0.804 (range, 0.636-0.933). For meningioma classification, the radiomics model based on automatic segmentation performed well in grading meningiomas, yielding a sensitivity, specificity, accuracy, and area under the curve (AUC) of 0.778 (95% CI: 0.701-0.856), 0.860 (95% CI: 0.722-0.908), 0.848 (95% CI: 0.715-0.903) and 0.842 (95% CI: 0.807-0.895) in the test set, respectively. CONCLUSIONS: The DLM yielded favorable automated detection and segmentation of meningioma and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.


Asunto(s)
Aprendizaje Profundo , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Radiómica , Imagen por Resonancia Magnética , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía
16.
Molecules ; 29(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398644

RESUMEN

Corn silk (Zea mays L.) is the stigma of an annual gramineous plant named corn, which is distributed in many regions worldwide and has a long history of medicinal use. In recent years, with the sustainable development of traditional Chinese medicine, studies of corn silk based on modern technologies, such as GC-MS, LC-MS, and other analytical means, have offered more comprehensive analyses. Phytochemistry studies have shown that the main bioactive components in corn silk include flavonoids, polyphenols, phenolic acids, fatty acids, and terpenoids. Pharmacological studies have shown that corn silk extract has various pharmacological effects, such as reducing blood lipids, lowering blood pressure, regulating blood sugar levels, anti-inflammatory effects, and anti-oxidation effects. In this paper, the related research on corn silk from the past few years is summarized to provide a theoretical reference for the further development and utilization of corn silk.


Asunto(s)
Extractos Vegetales , Zea mays , Presión Sanguínea , Medicina Tradicional China , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
17.
Bioorg Chem ; 145: 107210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364551

RESUMEN

Hecogenin (HCG), a steroidal sapogenin, possesses good antitumor properties. However, the application of HCG for cancer treatment has been hindered primarily by its moderate potency. In this study, we incorporated triphenylphosphonium cation (TPP+) at the C-3 and C-12 positions through different lengths of alkyl chains to target mitochondria and enhance the efficacy and selectivity of the parent compound. Cytotoxicity screening revealed that most of the target compounds exhibited potent antiproliferative activity against five human cancer cell lines (MKN45, A549, HCT-116, MCF-7, and HepG2). Structure-activity relationship studies indicated that the TPP+ group significantly enhanced the antiproliferative potency of HCG. Among these compounds, 3c demonstrated remarkable potency against MKN45 cells with an IC50 value of 0.48 µM, significantly more effective than its parent compound HCG (IC50 > 100 µM). Further investigations into the mechanism of action revealed that 3c induced apoptosis of MKN45 cells through the mitochondrial pathway. In a zebrafish xenograft model, 3c inhibited the proliferation of MKN45 cells. Overall, these results suggest that 3c, with potent antiproliferative activity, may serve as a valuable scaffold for developing new antitumor agents.


Asunto(s)
Antineoplásicos , Compuestos Organofosforados , Sapogeninas , Animales , Humanos , Estructura Molecular , Sapogeninas/farmacología , Pez Cebra , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Diseño de Fármacos
18.
Oral Oncol ; 150: 106715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340546

RESUMEN

Solitary fibrous tumor (SFT) represents an uncommon spindle cell sarcoma predominantly situated within soft tissue, with a notably infrequent occurrence in the nasal cavity and paranasal sinuses. In this report, we present a case involving a middle-aged male with a sizable solitary fibrous tumor affecting both the nasal and oral cavities.


Asunto(s)
Neoplasias Nasales , Senos Paranasales , Sarcoma , Tumores Fibrosos Solitarios , Persona de Mediana Edad , Humanos , Masculino , Neoplasias Nasales/diagnóstico , Neoplasias Nasales/patología , Tumores Fibrosos Solitarios/diagnóstico , Senos Paranasales/patología , Cavidad Nasal/patología , Sarcoma/patología
19.
Anal Chim Acta ; 1295: 342321, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38355235

RESUMEN

Enhancing electrochemiluminescence (ECL) properties of luminophores is a hot direction in the current ECL field. Herein, we found that covalent rigidification of the aggregation-induced emission luminogens (AIEgens) TABE (TABE = tetra-(4-aldehyde-(1,1-biphenyl))ethylene) into covalent organic framework nanosheets (TABE-PZ-CON, PZ = piperazine) could result in stronger ECL emission than those of TABE aggregates and TABE monomers. We termed the interesting phenomenon "covalent rigidification-triggered electrochemiluminescence (CRT-ECL) enhancement". The superior ECL performance of TABE-PZ-CON not only because massive TABE luminogens were covalently assembled into the rigid TABE-PZ-CON network, which limited the intramolecular motions of TABE and hampered the radiationless transition, but also because the ultrathin porous TABE-PZ-CON significantly reduced the transportation distance of ions, electrons, and coreactants, which enabled the electrochemical excitation of more TABE luminogens and thus enhanced the ECL efficiency. Bearing in mind the exceptional ECL performance of TABE-PZ-CON, it was utilized as a high-efficient ECL indicator in combination with the DNA walker and duplex-specific nuclease-assisted target recycling amplification strategies to design an "off-on" ECL biosensor for the ultrasensitive assay of microRNA-21, exhibiting a favorable response range (100 aM-1 nM) with an ultralow detection limit of 17.9 aM. Overall, this work offers a valid way to inhibit the intramolecular motions of AIEgens for ECL enhancement, which gives a new vision for building high-performance AIEgen-based ECL materials, thus offering more chances for assembling hypersensitive ECL biosensors.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , MicroARNs , Estructuras Metalorgánicas/química , Mediciones Luminiscentes , Técnicas Electroquímicas , Fotometría , MicroARNs/química , Límite de Detección
20.
Nat Commun ; 15(1): 1515, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373991

RESUMEN

The clinical implications of extrachromosomal DNA (ecDNA) in cancer therapy remain largely elusive. Here, we present a comprehensive analysis of ecDNA amplification spectra and their association with clinical and molecular features in multiple cohorts comprising over 13,000 pan-cancer patients. Using our developed computational framework, GCAP, and validating it with multifaceted approaches, we reveal a consistent pan-cancer pattern of mutual exclusivity between ecDNA amplification and microsatellite instability (MSI). In addition, we establish the role of ecDNA amplification as a risk factor and refine genomic subtypes in a cohort from 1015 colorectal cancer patients. Importantly, our investigation incorporates data from four clinical trials focused on anti-PD-1 immunotherapy, demonstrating the pivotal role of ecDNA amplification as a biomarker for guiding checkpoint blockade immunotherapy in gastrointestinal cancer. This finding represents clinical evidence linking ecDNA amplification to the effectiveness of immunotherapeutic interventions. Overall, our study provides a proof-of-concept of identifying ecDNA amplification from cancer whole-exome sequencing (WES) data, highlighting the potential of ecDNA amplification as a valuable biomarker for facilitating personalized cancer treatment.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , ADN , Aprendizaje Automático , Biomarcadores , Oncogenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA