RESUMEN
The investigation into specific treatments for jellyfish stings has consistently presented a significant medical challenge. Sika Deer antler protein (DAP), a valuable component of traditional Chinese medicine (TCM) known for its various pharmacological properties, has been widely utilized for the prevention and treatment of numerous diseases. In this study, proteome analysis and biological activity assays of DAP identified 94 distinct protein components and demonstrated its capability to scavenge free radicals. Moreover, administration of 50 mg/kg DAP notably enhanced survival rates in mice, mitigated increases in hematological indicators and inflammatory markers (IL-6, IL-1ß, and TNF-α), and alleviated pathological abnormalities induced by jellyfish venom. Additionally, DAP intervention significantly decreased the hemolysis rate and improved the viability of RAW264.7 cells, while reducing cell apoptosis and oxidative stress. Transcriptome analysis and western blotting of RAW264.7 cells further confirmed that DAP inhibited the activation of the NF-κB and MAPK signaling pathways. Overall, DAP effectively countered the toxicity of jellyfish venom by reducing oxidative damage and inflammatory response, highlighting the potential of TCM in treating jellyfish stings.
RESUMEN
Inorganic semiconductor materials are crucial for modern technologies, but their brittleness and limited processability hinder the development of flexible, wearable, and miniaturized electronics. The recent discovery of room-temperature plasticity in some inorganic semiconductors offers a promising solution, but the deformation mechanisms remain controversial. Here, we investigate the deformation of indium selenide, a two-dimensional van der Waals semiconductor with substantial plasticity. By developing a machine-learned deep potential, we perform atomistic simulations that capture the deformation features of hexagonal indium selenide upon out-of-plane compression. Unexpectedly, we find that indium selenide plastifies through a martensitic transformation; that is, the layered hexagonal structure is converted to a tetragonal lattice with specific orientation relationship. This observation is corroborated by high-resolution experimental observations and theory. It suggests a change of paradigm, where the design of new plastically deformable inorganic semiconductors can focus on compositions and structures that facilitate phase transformations, going beyond the conventional dislocation slip.
RESUMEN
BACKGROUND: This retrospective study aimed to analyze the evolution of primary indications and surgical techniques for corneal transplantation in Southern China from 2012 to 2021. METHODS: The medical charts of all patients who underwent keratoplasty between January 2012 and December 2021 at Zhongshan Ophthalmic Centre, Sun Yat-Sen University, Guangzhou, Southern China were reviewed. We collected and analyzed the primary indications for corneal transplantation and the surgical methods used in each keratoplasty. RESULTS: The total number of corneal transplantations was 7,286 during this decade, increasing from 210 cases in 2012 to 1054 cases in 2021. The primary indications for keratoplasty included acquired nontraumatic corneal diseases (56.2%), congenital corneal abnormalities (16.4%), acquired traumatic corneal diseases (14.0%), and regraft (13.4%). Infectious keratitis was the leading indication among all keratoplasties (18.5%), followed by regraft (13.4%). Over the decade, the proportion of infectious keratitis gradually decreased (P = 0.013), while the proportion of regraft increased (P = 0.019). The predominant surgical technique was penetrating keratoplasty (PKP), accounting for 56.7%. However, the number of deep anterior lamellar keratoplasty (DALK) and endothelial keratoplasty (EK) significantly increased from 2012 to 2021 (P = 0.007 and P = 0.002). CONCLUSIONS: The annual number of corneal transplants significantly increased from 2012 to 2021. In the past decade, infectious keratitis and regraft have become the leading primary indications for corneal transplantation. Although the use of customized lamellar techniques has dramatically increased, PKP remains the predominant surgical technique for keratoplasty.
Asunto(s)
Enfermedades de la Córnea , Trasplante de Córnea , Humanos , Estudios Retrospectivos , China/epidemiología , Trasplante de Córnea/métodos , Masculino , Femenino , Enfermedades de la Córnea/cirugía , Persona de Mediana Edad , Adulto , Centros de Atención Terciaria/estadística & datos numéricos , Anciano , Adolescente , Niño , Adulto Joven , PreescolarRESUMEN
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. The inflammatory response is the fundamental pathologic alteration throughout AKI, regardless of the various causal factors. Macrophages are the main immune cells involved in the inflammatory microenvironment in AKI. Consequently, targeting macrophages might become a novel strategy for the treatment of AKI. In this study, we demonstrated that pseudoginsenoside-F11 (PF11), a distinctive component of Panax quinquefolius L., regulated macrophage function and protected renal tubular epithelial cells TCMK-1 from lipopolysaccharide (LPS) in vitro. PF11 also alleviated renal injuries in an LPS-induced AKI mouse model, decreased the levels of inflammatory cytokines, reduced macrophage inflammatory infiltration, and promoted the polarization of M1 macrophages to M2c macrophages with suppression of the nuclear factor-κB/NOD-like receptor thermal protein domain-associated protein 3/interleukin-1ß (NF-κB/NLRP3/IL-1ß) signaling pathway. To further investigate whether this nephroprotective effect of PF11 is mediated by macrophages, we performed macrophage depletion by injection of clodronate liposomes in mice. Macrophage depletion abolished PF11's ability to protect against LPS-induced kidney damage with downregulating the NF-κB/NLRP3/IL-1ß signaling pathway. In summary, this is the first study providing data on the efficacy and mechanism of PF11 in the treatment of AKI by regulating macrophage function.
Asunto(s)
Lesión Renal Aguda , Ginsenósidos , Lipopolisacáridos , Macrófagos , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/administración & dosificación , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Panax/química , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: The region-specific importance of carcinogenic HPV genotypes is required for optimizing HPV-based screening and promoting appropriate multivalent HPV prophylactic vaccines. This information is lacking for Ningbo, one of the first cities of China's Healthy City Innovation Pilot Program for Cervical Cancer Elimination. Here, we investigated high-risk HPV (HR-HPV) genotype-specific distribution and attribution to biopsy-confirmed cervical intraepithelial neoplasia grade 2 or worse (CIN2+) before mass vaccination in Ningbo, China. METHODS: A total of 1393 eligible CIN2+ archived blocks (including 161 CIN2, 1107 CIN3, and 125 invasive cervical cancers [ICC]) were collected from 2017 to 2020 in Ningbo. HR-HPV DNA was genotyped using the SPF10-DEIA-LiPA25 version 1 detection system and the SureX HPV 25X Genotyping Kit. Genotype-specific attribution to CIN2+ was estimated using a fractional contribution approach. RESULTS: Ranking by the attributable proportions, HPV16 remained the most important genotype in both cervical precancers and cancers, accounting for 36.8% of CIN2, 53.2% of CIN3, and 73.3% of ICC cases. Among cervical precancers, HPV52 (17.3% in CIN2, 12.7% in CIN3) and HPV58 (13.9%, 14.9%) ranked second and third, while HPV33 (8.3%, 7.9%) and HPV31 (6.5%, 4.1%) ranked fourth and fifth, respectively. However, among ICCs, HPV18 (5.7%) accounted for the second highest proportion, followed by HPV33 (5.4%), HPV58 (4.0%), and HPV45 (3.2%). HPV18/45 together accounted for 46.8% of adenocarcinomas, which was slightly lower than that of HPV16 (47.7%). The remaining HR-HPV genotypes (HPV35/39/51/56/59/66/68) combined accounted for only 6.7% of CIN2, 2.9% of CIN3, and 4.2% of ICC. CONCLUSIONS: With Ningbo's strong medical resources, it will be important to continue HPV16/18 control efforts, and could broaden to HPV31/33/45/52/58 for maximum health benefits. However, different strategies should be proposed for other HR-HPV genotypes based on their lower carcinogenic risks.
RESUMEN
Heart failure is a multifaceted clinical syndrome, with obesity identified as a significant modifiable risk factor. This study employed a two-sample Mendelian randomization (MR) design, incorporating obesity data across life stages, to elucidate the causal link between obesity and heart failure. Data on heart failure from the 2023 Finngen database and genetic predictors of obesity from the IEU OpenGWAS project were analyzed using the IVW method, MR-Egger regression, weighted median, simple mode, weighted mode, and scatter plots. Heterogeneity was assessed with Cochran's Q test, and horizontal pleiotropy with MR-Egger intercept test. Sensitivity to single-nucleotide polymorphisms (SNPs) was tested via leave-one-out analysis, and funnel plots were utilized for visual inspection of horizontal pleiotropy. Statistical powers were also calculated. The MR analysis findings indicate a significant relationship between birth weight and the likelihood of developing heart failure (Odds Ratio [OR] 1.134, 95% Confidence Interval [CI] 1.033-1.245, P = 0.008). In addition, a heightened childhood BMI was found to be a significant predictor of heart failure risk (OR 1.307, 95% CI 1.144-1.494, P = 8.51E-05), as was childhood obesity (OR 1.123, 95% CI 1.074-1.173, P = 2.37E-07). Furthermore, adult BMI sex-combined exhibited a strong correlation with the risk of heart failure (OR 2.365, 95% CI 2.128-2.629, P = 1.91E-57). Sensitivity analyses provided further support for the reliability of these results, with no significant indication of horizontal pleiotropy observed. This study shows that obesity, including childhood obesity, is linked to a higher risk of heart failure. These findings highlight the urgent need for early weight management interventions in public health and clinical settings to reduce heart failure rates.
RESUMEN
A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.
RESUMEN
Metabolic-associated steatotic liver disease (MASLD), known as non-alcoholic fatty liver disease (NAFLD) in the past, encompasses a range of liver pathological conditions marked by the excessive lipid accumulation. Consumption of coffee is closely associated with the reduced risk of MASLD. Caffeic acid (CA), a key active ingredient in coffee, exhibits notable hepatoprotective properties. This study aims to investigate the improvement of CA on MASLD and the engaged mechanism. Mice underwent a 12-week high-fat diet (HFD) regimen to induce MASLD, and liver pathology was assessed using hematoxylin-eosin (H&E) and oil red O (ORO) staining. Hepatic inflammation was evaluated by F4/80 and Ly6G immunohistochemistry (IHC) and myeloperoxidase (MPO) measurement. Pathways and transcription factors relevant to MASLD were analyzed by using microarray data from patients' livers. Oxidative damage was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Co-immunoprecipitation (CoIP), cellular thermal shift assay (CETSA) and surface plasmon resonance (SPR) were used to validate the binding between CA and its target protein. CA significantly alleviated liver damage, steatosis and inflammatory injury, and reduced the elevated NAFLD activity score (NAS) in HFD-fed mice. Clinical data indicate that fatty acid metabolism and ROS generation are pivotal in MASLD progression. CA increased the expression of fibroblast growth factor 21 (FGF21), FGF receptor 1 (FGFR1) and ß-Klotho (KLB), and promoted fatty acid consumption. Additionally, CA mitigated oxidative stress injury and activated nuclear factor erythroid 2-related factor-2 (Nrf2). In primary hepatocytes isolated from Nrf2 knockout mice, CA's promotion on FGF21 release and inhibition on oxidative stress and lipotoxicity was disappeared. CA could directly bind to kelch-like ECH-associated protein 1 (Keap1) that is an Nrf2 inhibitor protein. This study suggests that CA alleviates MASLD by reducing hepatic lipid accumulation, lipotoxicity and oxidative damage through activating Nrf2 via binding to Keap1.
RESUMEN
Continuous renal replacement therapy (CRRT) is a commonly utilized treatment modality for individuals experiencing severe acute kidney injury (AKI). The objective of this research was to construct and assess prognostic models for the timely discontinuation of CRRT in critically ill AKI patients receiving this intervention. Data were collected retrospectively from the MIMIC-IV database (n = 758) for model development and from the intensive care unit (ICU) of Huzhou Central Hospital (n = 320) for model validation. Nine machine learning models were developed by utilizing LASSO regression to select features. In the training set, all models demonstrated an AUROC exceeding 0.75. In the validation set, the XGBoost model exhibited the highest AUROC of 0.798, leading to its selection as the optimal model for the development of an online calculator for clinical applications. The XGBoost model demonstrates significant predictive capabilities in determining the discontinuation of CRRT.
RESUMEN
In this study, polyacrylic acid hydrogels were prepared by modulating the cross-linking agent mass ratio using UV and heat curing methods. The structures and properties of the hydrogels were characterized and analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The results showed that the mechanical properties of the hydrogels prepared through UV curing were better than those prepared through heat curing. The maximum mechanical tensile strength of 139 kPa was achieved at a cross-linking agent mass ratio of 3.85% with 20 min of UV curing, and the maximum mechanical compressive strength of 0.16 MPa was achieved at a cross-linking agent mass ratio of 2.91% with 20 min of UV curing. However, the hydrogels prepared by heat curing had a higher tensile strength than those prepared using the heat curing method. In addition, the thermally cured hydrogels had higher water absorption and adsorption properties. Moreover, the PAA hydrogels prepared at cross-linking agent mass ratios of 1.91 and 2.91% with 2 h of the heat curing method had the best swelling properties. Moreover, the increase in the cross-linker mass concentration led to a decrease in the pore size and porosity and to a more compact structure.
RESUMEN
The seedling survival rate, yield, and individual weight of Gastrodia elata is closely related to the soil relative water content(RWC) and the growth characteristics of the associated fungi Armillaria spp. This study explored the effects of the soil RWC on the growth characteristics of Armillaria spp. and the seedling production of G. elata f. glauca, aiming to provide guidance for breeding G. elata f. glauca and selecting elite strains of Armillaria. According to the growth characteristics on the medium for activation, thirty strains of Armillaria were classified into 4 clusters. Two strains with good growth indicators were selected from each cluster and cultiva-ted with immature tuber(Mima) and the branches of the broad-leaved trees in a water-controlled box. The results showed that the Armillaria clusters with uniaxial branches of rhizoid cords, such as clusters â ¢ and â £, were excellent clusters in symbiosis with G. elata f. glauca. The soil RWC had significant effects on the growth characteristics of Armillaria strains and the seedling survival rate, yield, and individual weight of G. elata f. glauca. The growth characteristics of Armillaria strains and the seedling survival rate, yield, and individual weight of G. elata f. glauca in the case of the soil RWC being 75% were significantly better than those in the case of other soil RWC. Cultivating Mima with elite strains of Armillaria, together with branches of broad-leaved trees, in the greenhouses with the artificial control of the soil RWC, can achieve efficient seedling production and Mima utilization of G. elata f. glauca.
Asunto(s)
Armillaria , Gastrodia , Plantones , Suelo , Agua , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Gastrodia/crecimiento & desarrollo , Gastrodia/química , Gastrodia/metabolismo , Gastrodia/microbiología , Suelo/química , Agua/metabolismo , Armillaria/crecimiento & desarrollo , Armillaria/metabolismoRESUMEN
AIMS: The optimal sampling methods for detecting human papillomavirus (HPV) in male genital sites remain unclear. This study aimed to assess the performance, acceptability, and comfort of two sampling techniques for male genital HPV detection. METHODS AND RESULTS: A total of 490 men aged 18-45 were randomly assigned in a 1:1 ratio to undergo either the rub-brush (nail file followed by swab) or brush-only method (swab only) for sampling at external genitalia sites (PGS) and perineum/perianal (PA) sites. HPV distribution, specimen validity (ß-globin as a quality reference), and participant acceptability and comfort were evaluated between the two sampling methods. The brush-only method demonstrated non-inferiority in detecting 14 high-risk HPV types (16/18/31/33/35/39/45/51/52/56/58/59/66/68) compared to the rub-brush method in both PGS (18.9% vs. 16.9%) and PA (10.5% vs. 11.9%). Although no significant differences were observed in positive rates for other HPV types, the brush-only method had a significantly higher invalid rate in PA (8.5% vs. 1.5%). Approximately 85.0% of participants reported good acceptability and comfort with both sampling methods, regardless of anatomical sites. CONCLUSIONS: This study suggests comparable performance, acceptability and comfort between the two sampling techniques for HPV detection. However, the rub-brush method may offer an advantage in higher sample validity.
Asunto(s)
Papillomaviridae , Infecciones por Papillomavirus , Manejo de Especímenes , Humanos , Masculino , Adulto , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/virología , Manejo de Especímenes/métodos , Persona de Mediana Edad , Adulto Joven , Papillomaviridae/aislamiento & purificación , Adolescente , Genitales Masculinos/virologíaRESUMEN
Differentiated thyroid cancer (DTC) is the most common endocrine malignancy. Patients who receive systematic care typically have a better prognosis. RAI treatment plays a key role in eradicating any remaining thyroid lesions in DTC patients, hence decreasing the risk of distant metastases and cancer recurrence. As research continues to advance, RAI treatment is becoming more and more individualized. Because of the excellent prognosis for DTC patients, there is a relatively broad window for RAI treatment, making it easy to overlook when to receive RAI treatment. However, research on this issue can help patients with varying recurrence risk stratification make better decisions about when to begin RAI treatment following surgery, and physicians can schedule patients based on the severity of their disease. This will improve patient prognosis and lessen needless anxiety in addition to helping solve the problems of unjust healthcare resource distribution. In this review, we will mainly discuss the target population of RAI treatment as well as studies that examine the impact of RAI treatment timing on patient outcomes. In an effort to discourage DTC patients and physicians from selecting RAI therapy at random, we also review the possible negative effects of this treatment.
Asunto(s)
Radioisótopos de Yodo , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/patología , Radioisótopos de Yodo/uso terapéutico , Factores de Tiempo , Periodo Posoperatorio , Cuidados PosoperatoriosRESUMEN
Helicobacter pylori infection is characterized as progressive processes of bacterial persistence and chronic gastritis with features of infiltration of mononuclear cells more than granulocytes in gastric mucosa. Angiopoietin-like 4 (ANGPTL4) is considered a double-edged sword in inflammation-associated diseases, but its function and clinical relevance in H. pylori-associated pathology are unknown. Here, we demonstrate both pro-colonization and pro-inflammation roles of ANGPTL4 in H. pylori infection. Increased ANGPTL4 in the infected gastric mucosa was produced from gastric epithelial cells (GECs) synergistically induced by H. pylori and IL-17A in a cagA-dependent manner. Human gastric ANGPTL4 correlated with H. pylori colonization and the severity of gastritis, and mouse ANGPTL4 from non-bone marrow-derived cells promoted bacteria colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Il17a -/-, Angptl4 -/-, and Il17a -/- Angptl4 -/- mice. Mechanistically, ANGPTL4 bound to integrin αV (ITGAV) on GECs to suppress CXCL1 production by inhibiting ERK, leading to decreased gastric influx of neutrophils, thereby promoting H. pylori colonization; ANGPTL4 also bound to ITGAV on monocytes to promote CCL5 production by activating PI3K-AKT-NF-κB, resulting in increased gastric influx of regulatory CD4+ T cells (Tregs) via CCL5-CCR4-dependent migration. In turn, ANGPTL4 induced Treg proliferation by binding to ITGAV to activate PI3K-AKT-NF-κB, promoting H. pylori-associated gastritis. Overall, we propose a model in which ANGPTL4 collectively ensures H. pylori persistence and promotes gastritis. Efforts to inhibit ANGPTL4-associated pathway may prove valuable strategies in treating H. pylori infection.
RESUMEN
The discovery of negative differential conductance (NDC) in a single molecule and mechanism controlling this phenomenon are important for molecular electronics. We investigated the electronic properties of a typical radical molecule 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (CTPO) on an Au(111) surface using low-temperature scanning tunneling microscopy (STM) and inelastic electron tunneling spectroscopy. Large NDC was observed in single CTPO molecules at the boundary of the crystal monolayer. The origin of observed NDC is revealed as the inelastic electron-phonon scattering during tunneling, and the strong spatial variation of the NDC over the single molecule illustrates the nature of the localized radical group. In addition, the NDC can be transformed into a positive differential conductance peak by tuning coupling strengths between different tunneling channels. An empirical multi-channel model has been developed to describe the competition between the valley-shaped NDC and peak-shaped positive differential conductance. The unique electronic property and giant conductance change observed in this radical molecule is valuable for designing novel molecular devices in the future.
RESUMEN
The study used headspace solid-phase microextraction coupled with gas chromatography-time-of-flight mass spectrometry (HS-SPME-GC-TOF-MS) to analyze volatile compounds in leaves and fruits of Amomum tsaoko, Amomum paratsaoko, and Amomum koenigii. The composition and aroma of distinct metabolites were analyzed using multivariate statistical methods. A total of 564 volatile compounds were identified from three species of the genus Amomum, which were further divided into nine categories: terpenoids, carboxylic acids, alcohols, hydrocarbons, aldehydes, ketones, phenols, ethers, and other compounds. Terpenoids and alcohols were the most abundant. The content and types of compounds vary in A. tsaoko, A. paratsaoko, and A. koenigii, so mixing or substituting them is not advisable. We selected 45 metabolites based on the criteria of the variable importance in projection values (VIP > 1.5) and one-way ANOVA (p < 0.05). The top 19 metabolites with the most significant VIP values were chosen. Interestingly, (Z)-2-decenal was only found in Amomum koenigii, while nitroethane and nonanal were only present in cultivated A. tsaoko. Additionally, linalool, cineole, and (D)-limonene were the main components affecting the aroma of three species of the genus Amomum. The volatile components identified in this study provide a theoretical basis for analyzing the unique flavor of A. tsaoko, A. paratsaoko, and A. koenigii.
RESUMEN
Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.
RESUMEN
Due to the unique chemical and biomedical properties of carbon dots (CDs), they have increasingly obtained the attention in many research fields, for example, bioimaging, fluorescence sensing, and drug delivery, etc. Recently, it was found that, under light excitation, CDs can also be exploited as a novel photosensitizer to prepare reactive oxygen species (ROS), which expand their applications in the field of photodynamic therapy for cancer treatment. Nevertheless, the high cost and complex fabrication approach of CDs significantly limit their applications. To address this issue, bottom-up routes usually utilize sustainable and inexpensive carbon precursor as starting materials, employed N,N-dimethylformamide (DMF) or ethanol as an environmental-friendly solvent. Bottom-up approach was energy efficient, and the purification process was relatively simple by dialysis. Therefore, carbon dots (CDs) were facilely fabricated in a one-pot solvothermal process using 1-aminoanthraquinone as a precursor, and their application as photosensitizers for in vitro antitumor cells, especially photodynamic therapy (PDT) was established. Then the photophysical and nanoscale dimensions properties of the fabricated CDs were characterized via TEM, UV-visible, fluorescence, and FT-IR spectroscopy. The synthesized N-doped CDs can easily dissolve in water, possess very low biotoxicity, yellow-light emission (maximum peak at 587 nm). More importantly, PDT studies demonstrated that the obtained CDs possess a high singlet oxygen yield of 35%, and exhibit significant phototoxicity to cancer cells upon 635 nm laser irradiation. These studies highlight that N-doped CDs can be facilely synthesized from only one precursor, and are a potentially novel theranostic agent for in vivo PDT.
RESUMEN
The mammalian pituitary gland drives highly conserved physiological processes such as somatic cell growth, pubertal transformation, fertility, and metabolism by secreting a variety of hormones. Recently, single-cell transcriptomics techniques have been used in pituitary gland research. However, more studies have focused on adult pituitary gland tissues from different species or different sexes, and no research has yet resolved cellular differences in pituitary gland tissue before and after sexual maturation. Here, we identified a total of 15 cell clusters and constructed single-cell transcriptional profiles of rats before and after sexual maturation. Furthermore, focusing on the gonadotrope cluster, 106 genes were found to be differentially expressed before and after sexual maturation. It was verified that Spp1, which is specifically expressed in gonadotrope cells, could serve as a novel marker for this cell cluster and has a promotional effect on the synthesis and secretion of follicle-stimulating hormone. The results provide a new resource for further resolving the regulatory mechanism of pituitary gland development and pituitary hormone synthesis and secretion.
Asunto(s)
Gonadotrofos , Hipófisis , Maduración Sexual , Análisis de la Célula Individual , Animales , Ratas , Maduración Sexual/genética , Hipófisis/metabolismo , Gonadotrofos/metabolismo , Análisis de la Célula Individual/métodos , Masculino , Femenino , Biomarcadores/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Hormona Folículo Estimulante/metabolismoRESUMEN
Amomum tsaoko (AT) is commonly used in clinical practice to treat abdominal distension and pain. It is also a seasoning for cooking, with the functions of appetizing, invigorating the spleen, and being digestive-promoting. Amomum tsaoko (AT) has three adulterants, Amomum paratsaoko (AP), Amomum koenigii (AK), and Alpinia katsumadai Hayata, because of the confusion in historical classics regarding recorded sources as well as the near geographic distribution and fruit morphological similarities. In this study, we established a functional dyspepsia (FD) rat model and then treated it with the corresponding medicinal solutions AT, AP, AK, and AKH. The gastric emptying rate, intestinal propulsion rate, serum biochemical indicators, histopathological changes, and fecal metabolism were measured. The efficacy and mechanism of AT, AP, AK, and AKH in the treatment of FD were compared. Fecal metabolomics revealed that 20 potential biomarkers were involved in seven significant metabolic pathways in FD rats. These pathways include ubiquinone and other terpenoid-quinone biosynthesis, glycerophospholipid metabolism, tyrosine metabolism, primary bile acid biosynthesis, purine metabolism, folate biosynthesis, and amino sugar and nucleotide sugar metabolism. AP regulates 6 metabolic pathways, 5 metabolic pathways affected by AT, 4 metabolic pathways affected by AK, and 2 metabolic pathways affected by AKH.The above results suggest that the different effects of AT, AP, AK, and AKH on FD rats may be due to their different regulatory effects on the metabolome.