Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Pathog ; 20(7): e1012352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024388

RESUMEN

CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.


Asunto(s)
Diferenciación Celular , Malaria , Plasmodium yoelii , Receptores de Cinasa C Activada , Factor de Transcripción STAT3 , Células T Auxiliares Foliculares , Animales , Receptores de Cinasa C Activada/metabolismo , Factor de Transcripción STAT3/metabolismo , Malaria/inmunología , Malaria/parasitología , Ratones , Plasmodium yoelii/inmunología , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Ratones Noqueados , Centro Germinal/inmunología
2.
JCI Insight ; 9(14)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842948

RESUMEN

Sleep disturbance usually accompanies anxiety disorders and exacerbates their incidence rates. The precise circuit mechanisms remain poorly understood. Here, we found that glutamatergic neurons in the posteroventral medial amygdala (MePVGlu neurons) are involved in arousal and anxiety-like behaviors. Excitation of MePVGlu neurons not only promoted wakefulness but also increased anxiety-like behaviors. Different projections of MePVGlu neurons played various roles in regulating anxiety-like behaviors and sleep-wakefulness. MePVGlu neurons promoted wakefulness through the MePVGlu/posteromedial cortical amygdaloid area (PMCo) pathway and the MePVGlu/bed nucleus of the stria terminals (BNST) pathway. In contrast, MePVGlu neurons increased anxiety-like behaviors through the MePVGlu/ventromedial hypothalamus (VMH) pathway. Chronic sleep disturbance increased anxiety levels and reduced reparative sleep, accompanied by the enhanced excitability of MePVGlu/PMCo and MePVGlu/VMH circuits but suppressed responses of glutamatergic neurons in the BNST. Inhibition of the MePVGlu neurons could rescue chronic sleep deprivation-induced phenotypes. Our findings provide important circuit mechanisms for chronic sleep disturbance-induced hyperarousal response and obsessive anxiety-like behavior and are expected to provide a promising strategy for treating sleep-related psychiatric disorders and insomnia.


Asunto(s)
Amígdala del Cerebelo , Ansiedad , Nivel de Alerta , Neuronas , Animales , Nivel de Alerta/fisiología , Masculino , Amígdala del Cerebelo/metabolismo , Ratones , Neuronas/metabolismo , Ácido Glutámico/metabolismo , Vigilia/fisiología , Privación de Sueño/fisiopatología , Privación de Sueño/metabolismo , Sueño/fisiología , Vías Nerviosas , Modelos Animales de Enfermedad
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 506-511, 2024 May 15.
Artículo en Chino | MEDLINE | ID: mdl-38802912

RESUMEN

OBJECTIVES: To summarize the clinical characteristics and genetic variations in children with cystic fibrosis (CF) primarily presenting with pseudo-Bartter syndrome (CF-PBS), with the aim to enhance understanding of this disorder. METHODS: A retrospective analysis was performed on the clinical data of three children who were diagnosed with CF-PBS in Hunan Children's Hospital from January 2018 to August 2023, and a literature review was performed. RESULTS: All three children had the onset of the disease in infancy. Tests after admission showed hyponatremia, hypokalemia, hypochloremia, and metabolic alkalosis, and genetic testing showed the presence of compound heterozygous mutation in the CFTR gene. All three children were diagnosed with CF. Literature review obtained 33 Chinese children with CF-PBS, with an age of onset of 1-36 months and an age of diagnosis of 3-144 months. Among these children, there were 29 children with recurrent respiratory infection or persistent pneumonia (88%), 26 with malnutrition (79%), 23 with developmental retardation (70%), and 18 with pancreatitis or extrapancreatic insufficiency (55%). Genetic testing showed that c.2909G>A was the most common mutation site of the CFTR gene, with a frequency of allelic variation of 23% (15/66). CONCLUSIONS: CF may have no typical respiratory symptoms in the early stage. The possibility of CF-PBS should be considered for infants with recurrent hyponatremia, hypokalemia, hypochloremia, and metabolic alkalosis, especially those with malnutrition and developmental retardation. CFTR genetic testing should be performed as soon as possible to help with the diagnosis of CF.


Asunto(s)
Síndrome de Bartter , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Mutación , Humanos , Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Masculino , Femenino , Lactante , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Síndrome de Bartter/genética , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/complicaciones , Preescolar , Niño , Estudios Retrospectivos
4.
J Cell Biol ; 223(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38078859

RESUMEN

TLR/IL-1R signaling plays a critical role in sensing various harmful foreign pathogens and mounting efficient innate and adaptive immune responses, and it is tightly controlled by intracellular regulators at multiple levels. In particular, TOLLIP forms a constitutive complex with IRAK1 and sequesters it in the cytosol to maintain the kinase in an inactive conformation under unstimulated conditions. However, the underlying mechanisms by which IRAK1 dissociates from TOLLIP to activate TLR/IL-1R signaling remain obscure. Herein, we show that BLK positively regulates TLR/IL-1R-mediated inflammatory response. BLK-deficient mice produce less inflammatory cytokines and are more resistant to death upon IL-1ß challenge. Mechanistically, BLK is preassociated with IL1R1 and IL1RAcP in resting cells. IL-1ß stimulation induces heterodimerization of IL1R1 and IL1RAcP, which further triggers BLK autophosphorylation at Y309. Activated BLK directly phosphorylates TOLLIP at Y76/86/152 and further promotes TOLLIP dissociation from IRAK1, thereby facilitating TLR/IL-1R-mediated signal transduction. Overall, these findings highlight the importance of BLK as an active regulatory component in TLR/IL-1R signaling.


Asunto(s)
Citocinas , Quinasas Asociadas a Receptores de Interleucina-1 , Transducción de Señal , Familia-src Quinasas , Animales , Ratones , Citocinas/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Fosforilación , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA