Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Quant Imaging Med Surg ; 14(7): 4735-4748, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022244

RESUMEN

Background: Apathy, characterized by diminished goal-directed behaviors, frequently occurs in patients with Parkinson's disease (PD). The dopamine-releasing neurons of the ventral tegmental area (VTA) have been closely related to this behavioral disruption and project widely to the corticolimbic areas, yet their functional and structural connectivity in regard to other brain regions remain unknown in patients with PD and pure apathy (PD-PA). This study thus aimed to characterize the alterations of functional connectivity (FC) of the VTA and white matter structural connectivity in PD-PA. Methods: In this study, 29 patients with PD-PA, 37 with PD but not pure apathy (PD-NPA), and 28 matched healthy controls (HCs) underwent T1-weighted, resting state functional magnetic resonance imaging, and diffusion tensor imaging scans. Patients of this cross-sectional retrospective study were consecutively recruited from The First Affiliated Hospital of Nanjing Medical University between April 2017 and October 2021. Meanwhile, HCs were consecutively recruited from the local community and the Health Examination Center of our hospital. An analysis of covariance and a general linear model were respectively conducted to investigate the functional and structural connectivity among three groups. The tract-based spatial statistics (TBSS) approach was used to investigate the white matter structural connectivity. Results: Patients with PD-PA showed reduced FC of the VTA with the left medial superior frontal gyrus (SFGmed) when compared to the patients with PD-NPA [t=-3.67; voxel-level P<0.001; cluster-level family-wise error-corrected P (PFWE)<0.05]. Relative to the HCs, patients with PD-PA demonstrated reduced FC of the VTA with the left SFGmed (t=-4.98; voxel-level P<0.001; cluster-level PFWE<0.05), right orbital superior frontal gyrus (SFGorb) (t=-5.08; voxel-level P<0.001; cluster-level PFWE<0.05), and right middle frontal gyrus (MFG) (t=-5.08; voxel-level P<0.001; cluster-level PFWE<0.05). Moreover, the reductions in VTA FC with the left SFGmed were associated with severe apathy symptoms in patients with PD-PA (r=-0.600; P=0.003). However, a TBSS approach did not reveal any significant differences in fiber tracts between the three groups. Conclusions: This study identified reduced FC within the mesocortical network (VTA-SFGmed) of patients with PD-PA. These findings may provide valuable information for administering neuromodulation therapies in the alleviation of apathy symptoms in those with PD.

2.
eGastroenterology ; 2(2)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38895535

RESUMEN

Airborne particulate matter in fine and ultrafine ranges (aerodynamic diameter less than 2.5 µm, PM2.5) is a primary air pollutant that poses a serious threat to public health. Accumulating evidence has pointed to a close association between inhalation exposure to PM2.5 and increased morbidity and mortality associated with modern human complex diseases. The adverse health effect of inhalation exposure to PM2.5 pollutants is systemic, involving multiple organs, different cell types and various molecular mediators. Organelle damages and oxidative stress appear to play a major role in the cytotoxic effects of PM2.5 by mediating stress response pathways related to inflammation, metabolic alteration and cell death programmes. The organs or tissues in the digestive tract, such as the liver, pancreas and small intestines, are susceptible to PM2.5 exposure. This review underscores PM2.5-induced inflammatory stress responses and their involvement in digestive diseases caused by PM2.5 exposure.

3.
Neurobiol Dis ; 198: 106560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852751

RESUMEN

BACKGROUND: Impulse control disorders (ICD) in Parkinson's disease (PD) is highly multifactorial in etiology and has intricate neural mechanisms. Our multimodal neuroimaging study aimed to investigate the specific patterns of structure-function-neurotransmitter interactions underlying ICD. METHODS: Thirty PD patients with ICD (PD-ICD), 30 without ICD (PD-NICD) and 32 healthy controls (HCs) were recruited. Gyrification and perivascular spaces (PVS) were computed to capture the alternations of cortical surface morphology and glymphatic function. Seed-based functional connectivity (FC) were performed to identify the corresponding functional changes. Further, JuSpace toolbox were employed for cross-modal correlations to evaluate whether the spatial patterns of functional alterations in ICD patients were associated with specific neurotransmitter system. RESULTS: Compared to PD-NICD, PD-ICD patients showed hypogyrification and enlarged PVS volume fraction in the left orbitofrontal gyrus (OFG), as well as decreased FC between interhemispheric OFG. The interhemispheric OFG connectivity reduction was associated with spatial distribution of µ-opioid pathway (r = -0.186, p = 0.029, false discovery rate corrected). ICD severity was positively associated with the PVS volume fraction of left OFG (r = 0.422, p = 0.032). Furthermore, gyrification index (LGI) and percent PVS (pPVS) in OFG and their combined indicator showed good performance in differentiating PD-ICD from PD-NICD. CONCLUSIONS: Our findings indicated that the co-altered structure-function-neurotransmitter interactions of OFG might be involved in the pathogenesis of ICD.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta , Imagen por Resonancia Magnética , Imagen Multimodal , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Masculino , Persona de Mediana Edad , Femenino , Trastornos Disruptivos, del Control de Impulso y de la Conducta/diagnóstico por imagen , Trastornos Disruptivos, del Control de Impulso y de la Conducta/patología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/etiología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/fisiopatología , Anciano , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Neuroimagen/métodos , Neurotransmisores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología
4.
Methods Mol Biol ; 2825: 333-343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913319

RESUMEN

Cancer cytogenetic analyses often involve cell culture. However, many cytogeneticists overlook interesting phenotypes associated with cultured cells. Given that cytogeneticists need to focus more on phenotypes to comprehend the genotypes, the biological significance of seemingly trivial cellular variations deserves attention. One example is the formation of cellular tunneling tubes (TTs) in cultured cancer cells, which likely play a role in cell-to-cell communication and material transport. In this chapter, we describe protocols for studying these TTs as well as cellular spheres. In addition to diverse chromosomal variants, these different types of variations should be considered for understanding cancer heterogeneity and dynamics, as they illustrate the importance of various forms of fuzzy inheritance.


Asunto(s)
Comunicación Celular , Esferoides Celulares , Humanos , Esferoides Celulares/citología , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral
5.
J Affect Disord ; 361: 556-563, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925314

RESUMEN

OBJECTIVE: To investigate the effect of 20/4Hz transcutaneous auricular vagus nerve stimulation (taVNS) on anxiety symptoms in Parkinson's disease (PD) and the potential neural mechanism. METHODS: In the current randomized, double-blind, sham-controlled trial, 30 PD patients with anxiety (PD-A), 30 PD patients without anxiety (PD-nA), and 30 healthy controls (HCs) were enrolled. PD-A patients were randomly (1:1) allotted to real taVNS stimulation group (RS) or sham stimulation group (SS) to explore the efficacy of a two-week treatment of taVNS to promote anxiety recovery. Simultaneously, all participants were measured activation in the bilateral prefrontal cortex during verbal fluency task (VFT) using functional near-infrared spectroscopy. RESULTS: PD-A patients showed significantly decreased oxyhemoglobin in the left triangle part of the inferior frontal gyrus (IFG) during VFT, which was negatively related to the severity of anxiety symptoms. After two-week treatment of taVNS, the interaction of group and time had significant effect on HAMA scores (F = 18.476, p < 0.001, η2 = 0.398). In RS group, compared with baseline, HAMA scores decreased significantly in the post-treatment and follow-up condition (both p < 0.001). Meanwhile, in RS group, HAMA scores were lower than those in SS group in the post-treatment and follow-up condition (p = 0.006, <0.001, respectively). Furthermore, the 20/4Hz taVNS remarkably ameliorated anxiety symptoms in PD patients, directly correlated with the increased activation of the left triangle part of the IFG during VFT in RS group. CONCLUSION: Our results depicted that taVNS could ameliorate the anxiety symptoms of PD-A patients and regulated the function of the left triangle part of the IFG.


Asunto(s)
Ansiedad , Enfermedad de Parkinson , Corteza Prefrontal , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/complicaciones , Masculino , Femenino , Estimulación del Nervio Vago/métodos , Persona de Mediana Edad , Método Doble Ciego , Ansiedad/terapia , Ansiedad/fisiopatología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Corteza Prefrontal/fisiopatología , Anciano , Espectroscopía Infrarroja Corta , Resultado del Tratamiento
6.
Circulation ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836349

RESUMEN

BACKGROUND: Cardiomyocyte growth is coupled with active protein synthesis, which is one of the basic biological processes in living cells. However, it is unclear whether the unfolded protein response transducers and effectors directly take part in the control of protein synthesis. The connection between critical functions of the unfolded protein response in cellular physiology and requirements of multiple processes for cell growth prompted us to investigate the role of the unfolded protein response in cell growth and underlying molecular mechanisms. METHODS: Cardiomyocyte-specific inositol-requiring enzyme 1α (IRE1α) knockout and overexpression mouse models were generated to explore its function in vivo. Neonatal rat ventricular myocytes were isolated and cultured to evaluate the role of IRE1α in cardiomyocyte growth in vitro. Mass spectrometry was conducted to identify novel interacting proteins of IRE1α. Ribosome sequencing and polysome profiling were performed to determine the molecular basis for the function of IRE1α in translational control. RESULTS: We show that IRE1α is required for cell growth in neonatal rat ventricular myocytes under prohypertrophy treatment and in HEK293 cells in response to serum stimulation. At the molecular level, IRE1α directly interacts with eIF4G and eIF3, 2 critical components of the translation initiation complex. We demonstrate that IRE1α facilitates the formation of the translation initiation complex around the endoplasmic reticulum and preferentially initiates the translation of transcripts with 5' terminal oligopyrimidine motifs. We then reveal that IRE1α plays an important role in determining the selectivity and translation of these transcripts. We next show that IRE1α stimulates the translation of epidermal growth factor receptor through an unannotated terminal oligopyrimidine motif in its 5' untranslated region. We further demonstrate a physiological role of IRE1α-governed protein translation by showing that IRE1α is essential for cardiomyocyte growth and cardiac functional maintenance under hemodynamic stress in vivo. CONCLUSIONS: These studies suggest a noncanonical, essential role of IRE1α in orchestrating protein synthesis, which may have important implications in cardiac hypertrophy in response to pressure overload and general cell growth under other physiological and pathological conditions.

7.
Ann Clin Transl Neurol ; 11(7): 1831-1839, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764318

RESUMEN

OBJECTIVE: We aimed to investigate whether each type of sleep disturbances (i.e., pRBD, EDS, and insomnia) is specifically associated with faster decline in global cognition and different cognitive domains among de novo PD patients. We also assessed the influence of sleep disturbances on core AD CSF biomarkers alterations and conversion to dementia. METHODS: Prospectively longitudinal data were obtained from the PPMI cohort. Sleep disturbances and cognition ability were assessed by questionnaires at baseline and follow-up visits. Generalized linear mixed models were utilized to assess the effect of sleep disturbances on cognitive decline and core AD CSF biomarkers change. The associations between sleep disturbances and conversion to dementia were analyzed using Cox regression analysis. RESULTS: Baseline pRBD was associated with faster decline in global cognition and all cognitive domains, including verbal episodic memory, visuospatial ability, executive function, language, and processing speed. EDS was associated with faster decline in three cognitive domains, including verbal episodic memory, executive function/working memory, and processing speed. Insomnia was associated with faster decline in global cognition and verbal episodic memory. Meanwhile, pRBD and EDS were associated with longitudinal decrease of CSF Aß42. Baseline pRBD increased the risk of conversion to dementia. The risk of dementia in PD patients with multiple sleep disturbances also increased compared with those without sleep disturbance. INTERPRETATION: Sleep disturbances (i.e., pRBD, EDS, and insomnia) were associated with cognitive decline in early PD. EDS and pRBD were associated with decrease of CSF Aß42. Moreover, pRBD was associated with conversion to dementia.


Asunto(s)
Biomarcadores , Disfunción Cognitiva , Enfermedad de Parkinson , Trastornos del Sueño-Vigilia , Humanos , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/complicaciones , Femenino , Masculino , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Anciano , Trastornos del Sueño-Vigilia/líquido cefalorraquídeo , Trastornos del Sueño-Vigilia/etiología , Persona de Mediana Edad , Biomarcadores/líquido cefalorraquídeo , Estudios Longitudinales , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/líquido cefalorraquídeo , Progresión de la Enfermedad
8.
Front Aging Neurosci ; 16: 1364402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725535

RESUMEN

Introduction: Impulse control disorders (ICDs) refer to the common neuropsychiatric complication of Parkinson's disease (PD). The white matter (WM) topological organization and its impact on brain networks remain to be established. Methods: A total of 17 PD patients with ICD (PD-ICD), 17 without ICD (PD-NICD), and 18 healthy controls (HCs) were recruited. Graph theoretic analyses and Granger causality analyses were combined to investigate WM topological organization and the directional connection patterns of key regions. Results: Compared to PD-NICD, ICD patients showed abnormal global properties, including decreased shortest path length (Lp) and increased global efficiency (Eg). Locally, the ICD group manifested abnormal nodal topological parameters predominantly in the left middle cingulate gyrus (MCG) and left superior cerebellum. Decreased directional connectivity from the left MCG to the right medial superior frontal gyrus was observed in the PD-ICD group. ICD severity was significantly correlated with Lp and Eg. Discussion: Our findings reflected that ICD patients had excessively optimized WM topological organization, abnormally strengthened nodal structure connections within the reward network, and aberrant causal connectivity in specific cortical- limbic circuits. We hypothesized that the aberrant reward and motor inhibition circuit could play a crucial role in the emergence of ICDs.

9.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586033

RESUMEN

Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.

11.
NPJ Parkinsons Dis ; 10(1): 71, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548788

RESUMEN

Dilated perivascular spaces (PVS) have emerged as a pathological hallmark in various neurological conditions, including Parkinson's disease (PD). Levodopa-induced dyskinesia (LID), an intractable motor complication of PD, remains enigmatic regarding the distribution patterns of PVS. Our objective was to scrutinize the percent PVS (pPVS) changes within PD patients with LID (PD-LID). In total, 132 individuals were enrolled, including PD-LID (n = 42), PD patients without LID (PD-nLID, n = 45), and healthy controls (HCs, n = 45). Employing an automated approach for PVS quantification based on structural magnetic resonance imaging, we comprehensively evaluated total pPVS in subcortical white matter globally and regionally. A significant increase in global pPVS was observed in PD patients versus HCs, particularly evident in PD-LID relative to HCs. Within the PD-LID group, elevated pPVS was discerned in the right inferior frontal gyrus region (rIFG) (pars opercularis), contrasting with PD-nLID and HCs. Moreover, PD patients exhibited increased pPVS in bilateral superior temporal regions compared to HCs. Notably, pPVS in the rIFG positively correlated with dyskinetic symptoms and could well identify LID. Our findings unveiled PVS alternations in subcortical white matter in PD-LID at both global and regional levels, highlighting the increased pPVS in rIFG as a prospective imaging marker for LID.

12.
Neuroreport ; 35(6): 361-365, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526953

RESUMEN

This study investigated the sensory nerve function in people with different subtypes of Parkinson's disease (PD), which included the tremor-dominant (TD) group (n = 30), postural instability and gait disorder (PIGD) group (n = 33), and healthy-controls (HC) group (n = 33). Sural nerve's current perception threshold (CPT) and pain tolerance threshold (PTT) in both feet were measured at different frequencies. Results were evaluated using the mini-mental state examination (MMSE), Hoehn Yahr scale (H-Y) , and 3-meter timed-up-and-go-test (TUGT). The MMSE scores of the TD and HC groups were higher than those of the PIGD group (TD < HC). The 3-meter TUGT scores of the PIGD group were higher than theTD and HC groups (TD > HC). The PIGD patients experienced a significantly shorter disease duration and higher H-Y score than the TD patients ( P  < 0.05). The values of 2 KHz CPT of left-side (CPTL), 2KHz CPT of right-side (CPTR), and 5 Hz CPTR in the PIGD group were significantly higher compared to the TD and HC groups ( P  < 0.05, Bonferroni correction). Additionally, the values of 250 Hz CPTL, 5 Hz CPTL, 250 Hz CPTR, 2 kHz PTT of left-side (PTTL), 250 Hz PTTL, and 5 Hz PTTL in the PIGD group were significantly elevated relative to the TD group ( P  < 0.05, Bonferroni correction). Distinctive current threshold perception and PTT of the sural nerve can be observed in patients with varying PD subtypes, and sensory nerve conduction threshold electrical diagnostic testing can detect these discrepancies in sensory nerve function.


Asunto(s)
Trastornos Neurológicos de la Marcha , Trastornos Motores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Temblor/diagnóstico , Temblor/etiología , Marcha , Equilibrio Postural
13.
Trends Endocrinol Metab ; 35(6): 490-504, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521668

RESUMEN

The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.


Asunto(s)
Lipoproteína Lipasa , Humanos , Lipoproteína Lipasa/metabolismo , Animales , Triglicéridos/metabolismo , Proteínas Similares a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Proteína 8 Similar a la Angiopoyetina , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 3 Similar a la Angiopoyetina/metabolismo
14.
Res Sq ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464061

RESUMEN

Vascular fibrosis, characterized by increased Type I collagen expression, significantly contributes to vascular remodeling. Our previous studies show that disrupting the expression of SM22α (aka SM22, Tagln) induces extensive vascular remodeling following arterial injury, involving oxidative stress, inflammation, and chondrogenesis within the vessel wall. This study aims to investigate the molecular mechanisms underlying the transcription of Col1a2, a key fibrotic extracellular matrix marker. We observed upregulation of COL1A2 in the arterial wall of Sm22-/- mice following carotid injury. Bioinformatics and molecular analyses reveal that Col1a2 transcription depends on a CArG box in the promoter, activated synergistically by SRF and SMAD3. Notably, we detected enhanced nuclear translocation of both SRF and SMAD3 in the smooth muscle cells of the injured carotid artery in Sm22-/- mice. These findings demonstrate that SM22 deficiency regulates vascular fibrosis through the interaction of SRF and the SMAD3-mediated canonical TGF-ß1 signal pathway, suggesting SM22α as a potential therapeutic target for preventing vascular fibrosis.

15.
Neurosci Lett ; 827: 137736, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513936

RESUMEN

The Postural Instability/Gait Difficulty (PIGD) subtype of Parkinson's disease (PD) has a faster disease progression, a higher risk of cognitive and motor decline, yet the alterations of structural topological organization remain unknown. Diffusion Tensor Imaging (DTI) and 3D-TI scanning were conducted on 31 PD patients with PIGD (PD-PIGD), 30 PD patients without PIGD (PD-non-PIGD) and 35 Healthy Controls (HCs). Structural networks were constructed using DTI brain white matter fiber tractography. A graph theory approach was applied to characterize the topological properties of complex structural networks, and the relationships between significantly different network metrics and motor deficits were analyzed within the PD-PIGD group. PD-PIGD patients exhibited increased shortest path length compared with PD-non-PIGD and HCs (P < 0.05, respectively). Additionally, PD-PIGD patients exhibited decreased nodal properties, mainly in the cerebellar vermis, prefrontal cortex, paracentral lobule, and visual regions. Notably, the degree centrality of the cerebellar vermis was negatively correlated with the PIGD score (r = -0.390; P = 0.030) and Unified Parkinson's Disease Rating Scale Part III score (r = -0.436; P = 0.014) in PD-PIGD patients. Furthermore, network-based statistical analysis revealed decreased structural connectivity between the prefrontal lobe, putamen, supplementary motor area, insula, and cingulate gyrus in PD-PIGD patients. Our findings demonstrated that PD-PIGD patients existed abnormal structural connectomes in the cerebellar vermis, frontal-parietal cortex and visual regions. These topological differences can provide a topological perspective for understanding the potential pathophysiological mechanisms of PIGD in PD.


Asunto(s)
Trastornos Neurológicos de la Marcha , Corteza Motora , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Marcha , Equilibrio Postural/fisiología
16.
JCI Insight ; 9(6)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358827

RESUMEN

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene lead to CF, a life-threating autosomal recessive genetic disease. While recently approved Trikafta dramatically ameliorates CF lung diseases, there is still a lack of effective medicine to treat CF-associated liver disease (CFLD). To address this medical need, we used a recently established CF rabbit model to test whether sotagliflozin, a sodium-glucose cotransporter 1 and 2 (SGLT1/2) inhibitor drug that is approved to treat diabetes, can be repurposed to treat CFLD. Sotagliflozin treatment led to systemic benefits to CF rabbits, evidenced by increased appetite and weight gain as well as prolonged lifespan. For CF liver-related phenotypes, the animals benefited from normalized blood chemistry and bile acid parameters. Furthermore, sotagliflozin alleviated nonalcoholic steatohepatitis-like phenotypes, including liver fibrosis. Intriguingly, sotagliflozin treatment markedly reduced the otherwise elevated endoplasmic reticulum stress responses in the liver and other affected organs of CF rabbits. In summary, our work demonstrates that sotagliflozin attenuates liver disorders in CF rabbits and suggests sotagliflozin as a potential drug to treat CFLD.


Asunto(s)
Fibrosis Quística , Hepatopatías , Animales , Conejos , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Hepatopatías/complicaciones , Glicósidos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/complicaciones
17.
Cell Biosci ; 14(1): 27, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388523

RESUMEN

BACKGROUND: Sodium-Glucose cotransporter 1 and 2 (SGLT1/2) belong to the family of glucose transporters, encoded by SLC5A1 and SLC5A2, respectively. SGLT2 is almost exclusively expressed in the renal proximal convoluted tubule cells. SGLT1 is expressed in the kidneys but also in other organs throughout the body. Many SGLT inhibitor drugs have been developed based on the mechanism of blocking glucose (re)absorption mediated by SGLT1/2, and several have gained major regulatory agencies' approval for treating diabetes. Intriguingly these drugs are also effective in treating diseases beyond diabetes, for example heart failure and chronic kidney disease. We recently discovered that SGLT1 is upregulated in the airway epithelial cells derived from patients of cystic fibrosis (CF), a devastating genetic disease affecting greater than 70,000 worldwide. RESULTS: In the present work, we show that the SGLT1 upregulation is coupled with elevated endoplasmic reticulum (ER) stress response, indicated by activation of the primary ER stress senor inositol-requiring protein 1α (IRE1α) and the ER stress-induced transcription factor X-box binding protein 1 (XBP1), in CF epithelial cells, and in epithelial cells of other stress conditions. Through biochemistry experiments, we demonstrated that the spliced form of XBP1 (XBP1s) acts as a transcription factor for SLC5A1 by directly binding to its promoter region. Targeting this ER stress → SLC5A1 axis by either the ER stress inhibitor Rapamycin or the SGLT1 inhibitor Sotagliflozin was effective in attenuating the ER stress response and reducing the SGLT1 level in these cellular model systems. CONCLUSIONS: The present work establishes a causal relationship between ER stress and SGLT1 upregulation and provides a mechanistic explanation why SGLT inhibitor drugs benefit diseases beyond diabetes.

19.
Cell Death Discov ; 10(1): 52, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278799

RESUMEN

Despite the significant frequency of autonomic dysfunction (AutD) in Parkinson's disease (PD) patients, its pathogenesis and diagnosis are challenging. Here, we aimed to further explore the mechanism of phosphorylated α-synuclein (p-α-syn) deposited in vagus nerve Schwann cells (SCs) causing SCs damage and PD AutD. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) was administrated to C57BL/6 mice twice a week for 35 days. Following the final injection, locomotor functions, gastrointestinal symptoms, urine functions, and cardiovascular system functions were evaluated. Meanwhile, we examined p-α-syn deposited in vagus nerve SCs, Toll-like receptor 2 (TLR2) activation, and SCs loss using immunofluorescence, western blot, and Luxol fast blue staining. In vitro, the rat SCs line RSC96 cells were exposed to α-synuclein preformed fibril (α-syn PFF), and cell viability was detected by CCK8. Co-IP was used to identify the interaction between p-α-syn and TLR2. Furthermore, the role of TLR2 in p-α-syn-mediated SCs damage was confirmed by the administration of CU-CPT22, a specific blocker of TLR2. In vivo, apart from dyskinesia, MPTP mice exhibited constipation, urinary dysfunction, and cardiovascular failure, which were associated with the deposition of p-α-syn in vagus nerve SCs, TLR2 activation, and vagus nerve demyelination. In vitro, stimulation of α-syn PFF induced a time-dependent loss of viability, and p-α-syn deposited in RSC96 cells induced a cellular inflammatory response by interacting with TLR2, resulting in cell dysfunction and apoptosis. However, both SCs inflammatory response and cell viability were alleviated after inhibition of TLR2. Furthermore, 1 h fecal pellets and water content, the frequency of 1 h urine, blood pressure, heart rate, and heart rate variability of mice in the MPTP + CU-CPT22 group were also improved. Our results support the perspective that p-α-syn interacts with TLR2 induced SCs damage and is involved in PD AutD, which sheds fresh light on the mechanism of PD AutD and indicates a promising treatment for PD AutD targeting SCs p-α-syn/ TLR2 signaling pathway.

20.
Planta ; 259(1): 26, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110586

RESUMEN

MAIN CONCLUSION: It was proved for the first time that the miR172e-LbrAP2 module regulated the vegetative growth phase transition in Lilium, which provided a new approach to shorten the juvenile stage of Lilium, improved the reproduction rate, and reduced the propagation cost of Lilium commercial bulbs. Lilium is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the Lilium expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and LbrAP2 were negatively correlated. GUS histochemical staining confirmed that miR172e and LbrAP2 in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene, LbrAP2, upon binding, were identified by RLM 5' RACE analysis. In addition, miR172e and LbrAP2 showed opposite expression patterns after the transformation of Arabidopsis. miR172e overexpression accelerated the transition from juvenile to adult plants, whereas LbrAP2 overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene LbrAP2. Upregulation of the transcription factor LbrAP2 delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of LbrAP2, thereby accelerating the phase transition. Low-temperature treatment of Lilium bulbs can shorten Lilium development, which provides a new approach to accelerating Lilium commercial bulb breeding and reducing breeding costs.


Asunto(s)
Lilium , Lilium/genética , Lilium/metabolismo , Flores/genética , Fitomejoramiento , Factores de Transcripción/genética , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA