Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Cureus ; 16(5): e60321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38883104

RESUMEN

The introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has transformed the outcome of acute promyelocytic leukemia (APL) from a uniformly fatal disease to one of the most curable human malignancies in recent decades. However, early mortality caused by coagulopathy, infection, multi-organ failure, and differentiation syndrome (DS) during disease onset and induction treatment remains a major issue in APL, especially in elderly patients who may suffer from higher treatment-related mortality due to a higher vulnerability to treatment toxicities. Herein, we present a case of an elderly patient with APL with rare mixed long (L-) and short (S-) isoforms of PML::RARA fusion transcripts who had multiple complications at disease onset. In addition, the initiation of treatment with ATRA in combination with ATO led to the rapid onset of severe DS. In particular, this patient experienced a rare clinical feature of DS, acute edematous pancreatitis (AEP). Furthermore, due to the patient's refractory abdominal distension related to the dose of ATRA, ATO, and Realgar-Indigo Naturalis Formula (RIF), we have to repeatedly adjust the doses of these drugs that the patient can maximally tolerate. Nevertheless, the patient achieved complete remission (CR) even after receiving a substandard dose of these drugs. However, the patient relapsed, acquired the FLT3-ITD mutation nine months later, and experienced abdominal distension again while receiving the standard doses of ATRA and RIF. Therefore, these drugs were adjusted to the maximum tolerated dose based on the experience with the initial induction treatment, and the patient achieved CR after four weeks of reinduction treatment. We report that this case may provide some clinical information for the diagnosis and treatment of similar patients with APL.

2.
J Affect Disord ; 361: 536-545, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925313

RESUMEN

BACKGROUND: Hearing loss affects over 1.5 billion individuals globally, with significant implications for mental health. This study investigates the association between hearing aid use and mental health outcomes, by particularly focusing on depression and unmet mental health needs (UMHN), across a diverse international sample. METHODS: Utilizing data from the third wave of the European Health Interview Survey (EHIS), this study involved 17,660 participants with hearing impairment from 28 countries. The study examined the association between hearing aid use and mental health outcomes, including the likelihood of moderate and severe depression and UMHN due to lack of contact with general practitioners (GPs) and mental health specialists. Logistic regression models, adjusted for socio-demographic characteristics, health risk behaviours, and other relevant variables, were employed. Inverse probability weights were used to mitigate potential selection bias. RESULTS: Hearing aid usage was associated with significantly lower likelihoods of moderate depression (Odds Ratio [OR] = 0.58, 95%CI = [0.54, 0.63]) and severe depression (OR = 0.61, 95%CI = [0.55, 0.69]), compared to non-usage. Hearing aid usage was also associated with reduced UMHN due to lack of GP contact for moderate (OR = 0.82, 95%CI = [0.75, 0.89]) and severe depression (OR = 0.75, 95%CI = [0.59, 0.95]). The depression risk reductions were greater among females and higher-educated subgroups but lower in individuals aged ≥65 years. Income level and rurality also impacted UMHN due to the lack of GP contact. No associations were found between hearing aids and UMHN due to the lack of mental health specialist contact. CONCLUSIONS: Hearing aid adoption showed protective associations against mood disorders and lowered unmet primary mental healthcare needs. Tailoring intervention strategies to vulnerable sociodemographic profiles could optimize mental health benefits among those with hearing loss. Integrating hearing health services within mental healthcare delivery frameworks is vital amidst the rising global burden.

3.
Discov Oncol ; 15(1): 217, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856766

RESUMEN

BACKGROUND: Tyrosine kinase inhibitor (TKI) resistance is a significant factor exacerbating the burden on chronic myeloid leukemia (CML) patients and impacting clinical efficacy. The main goal is to offer new insights into overcoming drug resistance in treating CML. METHODS: Imatinib (IM) resistant K562/IM cells were generated using gradient induction. Responses to IM, lycorine, and autophagy modulators were assessed using CCK-8. Protein expression of Beclin-1, Atg5, LC3, Caspase-3, P62, Bax, Bcl-2, and P-gp was detected using Western blot. Lycorine-induced apoptosis and cell cycle changes were evaluated through flow cytometry, while autophagy alterations were detected using monodansylcadaverine (MDC) staining. In the K562/IM mice model, non-obese diabetic severe combined immunodeficent (NOD-SCID) mice were subcutaneously inoculated with K562/IM cells. After 17 days of lycorine injection, assessments included tumor size, hematoxylin-eosin (HE) staining, and Ki67 expression. RESULTS: After 72 h of IM treatment, K562/IM cells showed a 55.86-fold increase in drug resistance compared to K562 cells. Lycorine treatment for 24 h inhibited cell proliferation and induced G0/G1 phase cell cycle arrest and apoptosis in both K562 and K562/IM cells. MDC staining indicated reduced autophagy in K562/IM cells, mitigated by lycorine. In vivo experiments demonstrated reduced tumor size and Ki67 proliferation index in the lycorine treatment group (K562+L, K562/IM+L) compared to the control group, particularly in the drug-resistant group. However, no significant change in Ki67 was observed in the K562 group after lycorine treatment. CONCLUSION: In summary, K562/IM cells displayed heightened autophagy levels compared to K562 cells. Lycorine effectively impeded the proliferation of K562/IM cells through diverse mechanisms, including reduced autophagy, enhanced apoptosis, and induced cell cycle arrest.

4.
Discov Med ; 36(185): 1289-1297, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926115

RESUMEN

BACKGROUND: Genetic mutations play a crucial role in the development and progression of myelodysplastic syndromes (MDS), impacting the immune microenvironment and influencing the choice of treatment regimen, as well as the efficacy and prognosis of patients. The objective of this study was to examine variations in hematological and immunological characteristics associated with common gene mutations in MDS patients and establish a foundation for the precise treatment of MDS. METHODS: The hematological, immunological, and other clinical features of 71 recently diagnosed MDS patients from January 1, 2019, to July 31, 2023, were retrospectively analyzed. These patients were categorized based on their gene mutations, and the variances in hematological and immunological characteristics among distinct groups were compared. RESULTS: Hematological variances were observed among different gene mutation groups. Specifically, platelet counts in the splicing factor 3B subunit 1 (SF3B1) mutation group were notably higher compared to the wild-type group (p = 0.009). Conversely, in the additional sex combs like 1 (ASXL1) mutation groups, monocyte ratios were significantly elevated in comparison to the wild-type group (p = 0.046), and in the ten-eleven translocation 2 (TET2) mutation group, lymphocyte ratios were significantly lower (p = 0.022). Additionally, the leukocyte (p = 0.005), neutrophil ratio (p = 0.002), and lymphocyte ratio (p = 0.001) were significantly higher in the Runt-related transcription factor 1 (RUNX1) mutation group. Regarding immunological distinctions, the Natural Killer (NK) cell ratio demonstrated a significant increase in the SF3B1 mutation group (p = 0.005). Moreover, the TET2 mutation group exhibited a significantly higher Interleukin-8 (IL-8) level (p = 0.017). In contrast, the U2 small nuclear RNA auxiliary factor 1 (U2AF1) group displayed significantly lower levels of IL-1ß (p = 0.033), IL-10 (p = 0.033), and Tumour Necrosis Factor-α (TNF-α) (p = 0.009). CONCLUSION: Distinct variations exist in the immune microenvironment of MDS associated with different genetic mutations. Further studies are imperative to delve into the underlying mechanisms that drive these differences.


Asunto(s)
Dioxigenasas , Mutación , Síndromes Mielodisplásicos , Factores de Empalme de ARN , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/inmunología , Síndromes Mielodisplásicos/sangre , Femenino , Masculino , Persona de Mediana Edad , Anciano , Factores de Empalme de ARN/genética , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años , Proteínas de Unión al ADN/genética , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Células Asesinas Naturales/inmunología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Recuento de Plaquetas , Proteínas Represoras
5.
Rev Sci Instrum ; 95(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38739424

RESUMEN

Multidimensional microdriving stage is one of the key components to realize precision driving and high-precision positioning. To meet nanometer displacement and positioning in the fields of micro-/nano-machining and precision testing, a new six-degree-of-freedom microdriving stage (6-DOF-MDS) of multilayer spatially distributed piezoelectric ceramic actuators (PZTs) is proposed and designed. The interior of the 6-DOF-MDS is a hollow design. The flexure hinge is used as the transmission mechanism, and the series-parallel hybrid driving of the corresponding PZTs achieves the microtranslation in the X, Y, and Z directions and the microrotation around the three axes of the microdriving stage, forming a microdisplacement mechanism with high rigidity and simple structure, which can realize the microfeed of 6-DOF. The force-displacement theory and lug boss structure optimization of the 6-DOF-MDS are analyzed, while the strength checking and natural frequency of the 6-DOF-MDS are also simulated by the finite element method. In addition, the real-time motion control system of the 6-DOF-MDS is designed based on Advanced RISC Machines. Through a series of verification experiments, the stroke and resolution results of the 6-DOF-MDS are obtained, where the displacements in the X, Y, and Z directions are 20.72, 20.02, and 37.60 µm, respectively. The resolution is better than 0.68 nm. The rotation angles around X, Y, and Z are 38.96″, 33.80″, and 27.87″, respectively, with an angular resolution of 0.063″. Relevant coupling experiments were also performed in this paper; in the full stroke linear running of X-axis, the maximum coupling displacements of the Y- and Z-axes are 1.04 and 0.17 µm, respectively, with the corresponding coupling rates of ∼5.0% and 0.8%. The maximum coupling angles for the X-, Y-, and Z-axes are 0.33″, 0.14″, and 2.30″, respectively. Considering the coupling of the 6-DOF-MDS, decoupling measures and specific mathematical models have also been proposed. The proposed multidimensional microdriving stage achieves subnanometer resolution and can be used for the precise positioning and attitude control of precision instruments at the nano-/subnanometer level.

6.
Discov Oncol ; 15(1): 199, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819469

RESUMEN

BACKGROUND: The definitive establishment of a causal relationship between gut microbiota and myelodysplastic syndrome (MDS) has not been achieved. Furthermore, the involvement of immune cells in mediating the connection between gut microbiota and MDS is presently unclear. METHODS: To elucidate the bidirectional correlation between gut microbiota and MDS, as well as to investigate the mediating role of immune cells, a bidirectional two-sample, two-step Mendelian randomization (MR) study was conducted. Summary statistics were obtained from genome-wide association studies (GWAS), including MDS (456,348 individuals), gut microbiota (18,340 individuals), and 731 immune cells signatures (3757 individuals). RESULTS: Genetically predicted eight gut microbiota traits were significantly associated with MDS risk, but not vice versa. Through biological annotation of host-microbiome shared genes, we found that immune regulation may mediate the impact of gut microbiota on MDS. Subsequently, twenty-three immunophenotypes that exhibited significant associations with MDS risk and five of these immunophenotypes were under the causal influence of gut microbiota. Importantly, the causal effects of gut microbiota on MDS were significantly mediated by five immunophenotypes, including CD4 +T cell %leukocyte, CD127 on CD45RA - CD4 not regulatory T cell, CD45 on CD33 + HLA DR + WHR, CD33 on basophil, and Monocyte AC. CONCLUSIONS: Gut microbiota was causally associated with MDS risk, and five specific immunophenotypes served as potential causal mediators of the effect of gut microbiota on MDS. Understanding the causality among gut microbiota, immune cells and MDS is critical in identifying potential targets for diagnosis and treatment.

7.
BMC Cancer ; 24(1): 531, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671390

RESUMEN

OBJECTIVE: In the pathogenesis of myeloproliferative neoplasms (MPN), inflammation plays an important role. However, it is unclear whether there is a causal link between inflammation and MPNs. We used a bidirectional, two-sample Mendelian randomization (MR) approach to investigate the causal relationship between systemic inflammatory cytokines and myeloproliferative neoplasms. METHODS: A genome-wide association study (GWAS) of 8293 European participants identified genetic instrumental variables for circulating cytokines and growth factors. Summary statistics of MPN were obtained from a GWAS including 1086 cases and 407,155 controls of European ancestry. The inverse-variance-weighted method was mainly used to compute odds ratios (OR) and 95% confidence intervals (Cl). RESULTS: Our results showed that higher Interleukin-2 receptor, alpha subunit (IL-2rα) levels, and higher Interferon gamma-induced protein 10 (IP-10) levels were associated with an increased risk of MPN (OR = 1.36,95%CI = 1.03-1.81, P = 0.032; OR = 1.55,95%CI = 1.09-2.22, P = 0.015; respectively).In addition, Genetically predicted MPN promotes expression of the inflammatory cytokines interleukin-10 (IL-10) (BETA = 0.033, 95% CI = 0.003 ~ 0.064, P = 0.032) and monokine induced by interferon-gamma (MIG) (BETA = 0.052, 95% CI = 0.002-0.102, P = 0.043) and, on activation, normal T cells express and secrete RANTES (BETA = 0.055, 95% CI = 0.0090.1, P = 0.018). CONCLUSION: Our findings suggest that cytokines are essential to the pathophysiology of MPN. More research is required if these biomarkers can be used to prevent and treat MPN.


Asunto(s)
Citocinas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Trastornos Mieloproliferativos , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/sangre , Citocinas/sangre , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Masculino , Predisposición Genética a la Enfermedad , Femenino , Estudios de Casos y Controles , Inflamación/genética , Inflamación/sangre
8.
J Opt Soc Am A Opt Image Sci Vis ; 41(2): 157-164, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437328

RESUMEN

Feature point matching is one of the fundamental tasks in binocular vision. It directly affects the accuracy and quality of 3D reconstruction. This study proposes a directional region-based feature point matching algorithm based on the SURF algorithm to improve the accuracy of feature point matching. First, same-name points are selected as the matching reference points in the left and right images. Then, the SURF algorithm is used to extract feature points and construct the SURF feature point descriptors. During the matching process, the location relationship between the query feature point and the reference point in the left image is directed to determine the corresponding matching region in the right image. Then, the matching is completed within this region based on Euclidean distance. Finally, the grid-based motion statistics algorithm is used to eliminate mismatches. Experimental results show that the proposed algorithm can substantially improve the matching accuracy and the number of valid matched points, particularly in the presence of a large amount of noise and interference. It also exhibits good robustness and stability.

9.
Front Cell Dev Biol ; 12: 1359084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410372

RESUMEN

Multiple myeloma (MM), a stage-developed plasma cell malignancy, evolves from monoclonal gammopathy of undetermined significance (MGUS) or smoldering MM (SMM). Emerging therapies including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, chimeric antigen-T/natural killer (NK) cells, bispecific T-cell engagers, selective inhibitors of nuclear export, and small-molecule targeted therapy have considerably improved patient survival. However, MM remains incurable owing to inevitable drug resistance and post-relapse rapid progression. NK cells with germline-encoded receptors are involved in the natural evolution of MGUS/SMM to active MM. NK cells actively recognize aberrant plasma cells undergoing malignant transformation but are yet to proliferate during the elimination phase, a process that has not been revealed in the immune editing theory. They are potential effector cells that have been neglected in the therapeutic process. Herein, we characterized changes in NK cells regarding disease evolution and elucidated its role in the early clinical monitoring of MM. Additionally, we systematically explored dynamic changes in NK cells from treated patients who are in remission or relapse to explore future combination therapy strategies to overcome drug resistance.

10.
Front Microbiol ; 15: 1310444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410384

RESUMEN

Introduction: The microbial genome-wide association studies (mbGWAS) have highlighted significant host-microbiome interactions based on microbiome heritability. However, establishing causal relationships between particular microbiota and multiple myeloma (MM) remains challenging due to limited sample sizes. Methods: Gut microbiota data from a GWAS with 18,340 participants and MM summary statistics from 456,348 individuals. The inverse variance-weighted (IVW) method was used as the main bidirectional Mendelian randomization (MR) analysis. To assess the robustness of our results, we further performed supplementary analyses, including MR pleiotropy residual sum and outlier (MR-PRESSO) test, MR-Egger, Weighted median, Simple mode, and Weighted mode. Moreover, a backward MR analysis was conducted to investigate the potential for reverse causation. Finally, gene and gene-set-based analyses were then conducted to explore the common biological factors connecting gut microbiota and MM. Results: We discovered that 10 gut microbial taxa were causally related to MM risk. Among them, family Acidaminococcaceae, Bacteroidales family S24-7, family Porphyromonadaceae, genus Eubacterium ruminantium group, genus Parabacteroides, and genus Turicibacter were positively correlated with MM. Conversely, class Verrucomicrobia, family Verrucomicrobiaceae, genus Akkermansia, and order Verrucomicrobiales were negatively correlated with MM. The heterogeneity test revealed no Heterogeneity. MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy. Importantly, leave-one-out analysis confirmed the robustness of MR results. In the backward MR analysis, no statistically significant associations were discovered between MM and 10 gut microbiota taxa. Lastly, we identified novel host-microbiome shared genes (AUTS2, CDK2, ERBB3, IKZF4, PMEL, SUOX, and RAB5B) that are associated with immunoregulation and prognosis in MM through biological annotation. Discussion: Overall, this study provides evidence supporting a potential causal relationship between gut microbiota and MM risk, while also revealing novel host-microbiome shared genes relevant to MM immunoregulation and clinical prognosis.

11.
Ann Med ; 55(2): 2280228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38010099

RESUMEN

OBJECTIVE: To compare CO2 laser resection and laryngeal microsurgery for vocal cord polyps and provide evidence for the optimal surgical method. METHODS: This was a retrospective cohort study that included 74 patients with vocal cord polyps who underwent either CO2 laser resection or laryngeal microsurgery in our hospital from August 2018 to December 2021. According to their preference, 77 patients were divided into two groups: a CO2 laser resection group (n = 35) and a laryngeal microsurgery group (n = 39). Patients were evaluated two days before surgery, and follow-ups were conducted one, two and four weeks after surgery. The voice handicap index (VHI-10) score, voice acoustic analysis results and electronic laryngoscopy results were collected for each patient, and the differences between the two groups were evaluated. RESULTS: The basic demographic characteristics of the 74 patients were comparable, and all patients completed postoperative follow-up observations. A total of 30 (85.71%) patients in the CO2 laser resection group and 22 (56.41%) patients in the laryngeal microsurgery group were healed. The total effectiveness rate of the CO2 laser resection group (94.29%) was significantly higher than that of the laryngeal microsurgery group (82.05%), and the difference between the two groups was statistically significant (p = .037). Both surgical methods had a positive effect on reducing VHI-10 scores with the effect of CO2 laser resection being more obvious. The difference between the two groups in this regard was statistically significant (p < .001). The effects of each surgical method on the average fundamental frequency perturbation (jitter), amplitude perturbation (shimmer), maximum phonation time and dysphonia severity index were not statistically significant (p > .05). CONCLUSION: CO2 laser resection and laryngeal microsurgery have similar effects on voice quality, but CO2 laser resection has higher clinical efficacy.


Asunto(s)
Enfermedades de la Laringe , Láseres de Gas , Pólipos , Humanos , Microcirugia/efectos adversos , Pliegues Vocales/cirugía , Dióxido de Carbono , Estudios Retrospectivos , Enfermedades de la Laringe/cirugía , Resultado del Tratamiento , Láseres de Gas/uso terapéutico , Pólipos/cirugía
12.
J Cancer ; 14(17): 3191-3202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928417

RESUMEN

Purpose: Multiple myeloma, the second most common hematological tumor, is currently incurable. Multiple myeloma-related bone disease is a characteristic clinical symptom that seriously affects the survival and prognosis of patients. In recent years, gut microbiota has been shown to play an important role in the occurrence and development of multiple myeloma. However, whether and how it affects the development of myelomatous bone disease is unclear. Methods: To investigate the mechanism and influence of the microbiota on multiple myeloma and myeloma bone disease, a myeloma-gut microbiota deletion mice model was established. 16S rRNA sequencing was used to analysis of bacterial flora changes. Histochemical staining and bone micro-CT were used to assess the severity of bone disease. Bone marrow tumor load and spleen Th17 cells were detected by flow cytometry. Results: Histochemical staining revealed a reduced tumor burden after eliminating gut microbial communities in mice by administering a mixture of antibiotics. According to the 16S rRNA sequencing of intestinal contents, antibiotic treatment resulted in a significant change in the microbiota of the mice. Bone micro-CT demonstrated that antibiotic treatment could reduce bone lesions caused by myeloma while increasing mineral density, bone volume fraction, trabecular bone thickness, and trabecular number. Meanwhile, histochemical staining of the bone found that the enhanced bone resorption was weakened by the change of flora. These results were consistent with the concentration of IL17 in serum and the frequency of Th17 cells in spleen. Conclusions: Herein, the effects of the gut microbiome on myeloma bone disease are investigated for the first time, providing new insight into its pathogenesis and suggesting that gut microbiota may serve as a therapeutic target in multiple myeloma-associated bone diseases.

13.
Food Funct ; 14(24): 10910-10923, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37997787

RESUMEN

The prevalence of type 2 diabetes mellitus (T2DM) has dramatically increased globally, and the antidiabetic effects and underlying mechanisms of the polysaccharides extracted from Fu brick tea (FBTP) were investigated in high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM rats. Administration of FBTP at 200 and 400 mg per kg bw significantly relieved dyslipidemia (i.e. TC, TG, LDL-C and HDL-C), insulin resistance (IR) and pancreas oxidative stress (i.e. CAT and GSH-Px) in T2DM rats. Mechanistically, FBTP rescued the HFD/STZ-induced alterations in the abundance of Bacteroidota, Actinobacteriota, Proteobacteria and Firmicutes. At the genus level, FBTP notably increased the abundance of Ruminococcus, Lactobacillus and Lachnospiraece_NK4A136_group, but reduced the population of Prevotella and Faecalibaculum in T2DM rats. FBTP also significantly elevated colonic short-chain fatty acid (SCFAs) levels. Moreover, apparent changes in amino acid absorption and metabolism were observed upon FBTP intervention. These findings suggested that FBTP might alleviate T2DM by reshaping the gut microbiota and regulating intestinal metabolites.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estreptozocina , Dieta Alta en Grasa/efectos adversos , , Polisacáridos/farmacología
14.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
15.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862531

RESUMEN

To meet the high requirements for positioning accuracy and multiple dimensions of positioning systems in the fields of precision measurement and precision machining, a new submicron-precision three-dimensional (3D) low cross-interference positioning system is designed and fabricated in this paper. The 3D motion stage mainly includes a mechanical structure, a support and guide system, and a driving system. The Abbe offset error is eliminated by adopting a coplanar structure in the X and Y directions, thus minimizing the mutual cross-interference of the motion stage. The X and Y motion stages are driven by a ball screw pair and an alternating current servo motor, which are supported and guided by an air-floating rail and slider. Moreover, the X and Y air-floating stages adopt a lateral structure and double rails, respectively. The Z-motion stage is directly driven by a high-precision piezoelectric motor. In addition, the system achieves high-precision motion by using the dual-loop control technology of secondary feedback combined with the high-resolution control characteristics of the servo motor. The performance of the positioning system is evaluated through a series of verification experiments. Results show that the stroke of the positioning system of the 3D air-floating motion stage can reach 100 × 100 × 100 mm3, and the repeated positioning accuracy is better than 0.41 µm (k = 2, k is defined by the International Organization for Standardization as the coverage factor). The maximum cross-interference of the X-stage is 180 nm, and the Y-stage reaches 320 nm when running with a full stroke of 100 mm in the Z-direction, demonstrating good repeatability, stable running, and high straightness. The submicron-precision 3D air-floating motion stage developed in this paper can be used as a suitable solution for coordinate measuring machines, microlithography, and micromachining applications when combined with an additional nanoprecision microstage.

16.
Mol Cell Biochem ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812348

RESUMEN

Prostate cancer (PCa) is a prevalent malignant neoplasm affecting the male reproductive system globally. However, the diagnostic and therapeutic approaches fall short of meeting the demands posed by PCa. Poor expression of miRNA-203 (miR-203) within PCa tissues and cells implies its potential utility as a diagnostic indicator for PCa. Exosomes (Exo), membranous vesicles released by various cells, are rich reservoirs of miRNAs. However, the presence of miR-203 presents within Exo derived from PCa cells remains unclarified. In this study, Exo was isolated from urine specimens collected from clinical PCa patients and LNCaP cells to detect miR-203 expression. Meanwhile, the impact of overexpressed miR-203 on M0 macrophages (mø) was analyzed. Subsequently, alterations in the proliferative, migratory, and invasive capacities of LNCaP cells were examined within a co-culture system featuring elevated miR-203 levels in both macrophages and LNCaP cells. Furthermore, the repercussions of miR-203 upregulation or inhibition were explored in a murine PCa tumor model. The results revealed that Exo manifested a circular or elliptical morphology, encapsulating a phospholipid bilayer approximately 100 nm in diameter. Notably, Exo readily infiltrated, with both Exo and miR-203-overexpressing Exo prompting macrophage polarization toward the M1 subtype. In the co-culture system, miR-203 exhibited pronounced suppression of LNCaP cell proliferation, migration, and invasion, while concurrently fostering apoptosis as compared with the LNCaP group (Control). In vivo experiments further disclosed that miR-203 greatly inhibited the growth of PCa tumors in nude mice. Markedly heightened expression of M1 macrophage markers such as IL-1ß, IL-6, IL-12, CXCL9, and CXCL10 was observed within the tumor microenvironment following miR-203 intervention, as opposed to the model group. However, the introduction of miR-203 antagomir led to a reversal in tumor growth trends. This investigation indicates the presence of miR-203 within the urine of PCa patients and Exo originating from cells, and that miR-203 exerted antitumor effect by facilitating M1 macrophage polarization. Our study furnishes valuable insights into the potential applicability of miR-203 as a diagnostic biomarker and therapeutic target for PCa.

17.
Nat Metab ; 5(10): 1787-1802, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37679556

RESUMEN

Neuroinflammatory microglia secrete cytokines to induce neurotoxic reactive astrocytes, which are one of the major causes of neuronal death. However, the intrinsic key regulators underlying neurotoxic reactive astrocytes induction are unknown. Here we show that the transmembrane protein 164 (TMEM164) is an early-response intrinsic factor that regulates neurotoxic astrocyte reactivity. TMEM164 overexpression inhibits the induction of neurotoxic reactive astrocytes, maintains normal astrocytic functions and suppresses neurotoxic reactive astrocyte-mediated neuronal death by decreasing the secretion of neurotoxic saturated lipids. Adeno-associated virus-mediated, astrocyte-specific TMEM164 overexpression in male and female mice prevents the induction of neurotoxic reactive astrocytes, dopaminergic neuronal loss and motor deficits in a Parkinson's disease model. Notably, brain-wide astrocyte-specific TMEM164 overexpression prevents the induction of neurotoxic reactive astrocytes, amyloid ß deposition, neurodegeneration and memory decline in the 5XFAD Alzheimer's disease mouse model, suggesting that TMEM164 could serve as a potential therapeutic target for neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Femenino , Ratones , Animales , Masculino , Astrocitos/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Neuronas/metabolismo
18.
Pathol Oncol Res ; 29: 1611338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637774

RESUMEN

Multiple myeloma (MM) is a hematologic disorder characterized by the accumulation of malignant plasma cells in the bone marrow. Genetic and environmental factors are contributed to the etiology of MM. Notably, studies have shown that obesity increases the risk of MM and worsens outcomes for MM patients. Adipokines play an important role in mediating the close association between MM and metabolic derangements. In this review, we summarize the epidemiologic studies to show that the risk of MM is increased in obese. Accumulating clinical evidence suggests that adipokines could display a correlation with MM. In vitro and in vivo studies have shown that adipokines are linked to MM, including roles in the biological behavior of MM cells, cancer-associated bone loss, the progression of MM, and drug resistance. Current and potential therapeutic strategies targeted to adipokines are discussed, proposing that adipokines can guide early patient diagnosis and treatment.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/etiología , Adipoquinas , Factores de Riesgo , Obesidad/complicaciones
19.
Am J Hematol ; 98(11): 1742-1750, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37647123

RESUMEN

Marginal zone lymphoma (MZL) is an indolent type of non-Hodgkin lymphoma that develops through pathological B cell receptor signaling. Orelabrutinib, a new-generation oral small molecule Bruton's tyrosine kinase inhibitor, was evaluated in relapsed/refractory (r/r) MZL patients. Previously treated r/r MZL patients received orelabrutinib 150 mg once daily in a phase 2, multicenter, single-arm study conducted in China. The primary endpoint was overall response rate (ORR) assessed by an Independent Review Committee (IRC) based on the Lugano 2014 classification. Other efficacy, safety, and pharmacokinetic profiles were evaluated as secondary outcome measures. A total of 111 patients were enrolled, of which 90 patients had MZL confirmed by central pathology review, who were mainly with extra-nodal MZL of mucosa-associated lymphoid tissue (MALT, 46.7%) and nodal MZL (35.6%). The majority had late-stage disease, with stage IV accounting for 75.6%. After a median follow-up duration of 24.3 months, the IRC-assessed ORR was 58.9% (95% confidence interval [CI], 48.0-69.2), with rates of complete response and partial response being 11.1% and 47.8%, respectively. The IRC-assessed median duration of response was 34.3 months, and the IRC-assessed median progression-free survival (PFS) was not reached with a 12-month PFS rate of 82.8% (95% CI, 72.6-89.5). The rate of overall survival at 12 months was 91.0% (95% CI, 82.8-95.4). Common all-grade treatment-related adverse events (TRAEs) included anemia (27.9%), neutrophil count decrease (23.4%), white blood cell count decrease (18.0%), platelet count decrease (17.1%), blood present in urine (16.2%), rash (14.4%), and upper respiratory tract infection (10.8%). Thirty-four patients (30.6%) experienced grade 3 or higher TRAEs. Serious TRAEs occurred in 18 patients (16.2%), of which pneumonia (5.4%) was the most common. Seven patients (6.3%) discontinued orelabrutinib due to TRAEs. Orelabrutinib demonstrated high response rates with durable disease remission and was well tolerated in Chinese patients with r/r MZL.

20.
Genes Dis ; 10(6): 2306-2319, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37554207

RESUMEN

The bromodomain and extra-terminal (BET) proteins act as "readers" for lysine acetylation and facilitate the recruitment of transcriptional elongation complexes. BET protein is associated with transcriptional elongation of genes such as c-MYC and BCL-2, and is involved in the regulation of cell cycle and apoptosis. Meanwhile, BET inhibitors (BETi) have regulatory effects on immune checkpoints, immune cells, and cytokine expression. The role of BET proteins and BETi in a variety of tumors has been studied. This paper reviews the recent research progress of BET and BETi in hematologic tumors (mainly leukemia, lymphoma and multiple myeloma) from cellular level studies, animal studies, clinical trials, drug combination, etc. BETi has a promising future in hematologic tumors, and future research directions may focus on the combination with other drugs to improve the efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA